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Abstract 
A multigrid solver is defined as having textbook multigrid efficiency (ThIE) if the solutions 
to the governing system of equations are attained in a computational work which is a 
small (less than 10) multiple of the operation count in evaluating the discrete residuals. 
TME in solving the incompressible inviscid fluid equations is demonstrated for leading- 
edge stagnation flows. The contributions of this paper include (1) a special formulation 
of the boundary conditions near stagnation allowing convergence of the Kewton iterations 
on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual 
restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error 
amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of 
algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) 
solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence 
rates of the F.4S cycles for the full system of flow equations are very fast, approaching those 
for scalar elliptic equations. 
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1 Introduction 
This paper addresses one aspect ~ multigrid treatment of leading-edge stagnation flows 
~ towards the goal of attaining textbook multigrid efficiency (TME) in solving general 
computational fluid dynamics (CFD) equations. A multigrid method is defined [4,7] as 
having TME if the solutions to the governing system of differential equations are attained 
in a total computational work of less than 10 minimal work units; a mmimal work unat is 
defined as the operation count in evaluating the residuals of the discretized equations. Such 
efficiencies have been demonstrated for elliptic problems [12.28,30]. The compressible Euler 
and Navier-Stokes equations are sets of coupled nonlinear equations of mixed type that 
admit discontinuous solutions (shocks, slip lines, etc.) Flow- or grid-induced singularities 
can occur. A list of envisioned difficulties and possible solutions in attaining ThlE for 
CFD simulations is discussed elsewhere [7,10,27]. Compared to  current solvers, there is a 
potential gain of several orders of magnitude in operation count reduction if ThIE could be 
attained for CFD simulations. 

The equations of steady, viscous, incompressible flow in two dimensions are governed 
by uniformly elliptic and convection-diffusion factors. In multigrid solvers, it is often pos- 
sible to separate these factors: corrections associated with the elliptic factors can be com- 
puted efficiently with multigrid while corrections associated with the convection-dominated 
convection-diffusion factors can be computed by downstream marching. The convergence 
rate of the solution is then determined by the convergence of the slower factors, which are 
the elliptic factors in this particular scenario. This separation. or factorization, can be 
achieved using several approaches, such as distributed relaxation [ 111 or equation reformu- 
lation [23,26]. 

One such approach, the pressure-equation formulation [23], has been extended to general 
coordinates and implemented for lifting airfoils in inviscid flow [20-221 and viscous flow [25]. 
Grid-independent convergence rates were demonstrated in both situations; the convergence 
rates, although quite fast, were not as fast as the optimal multigrid rates for the underly- 
ing elliptic factor. Difficulties were reported near stagnation, especially for inviscid flows. 
Other (unpublished) simulations showed that on some coarse grids with a poor leading-edge 
resolution, no solutions could be attained. The research reported in this paper evolved from 
attempts to analyze and understand the erratic behavior of multigrid solvers for stagnation 
flows. 

During the course of the work the following four principal difficulties associated with 
achieving TME for stagnation-flow problems have been identified and overcome: 

1. The accuracy of the discrete solution is very sensitive to boundary condition formula- 
tions in the vicinity of stagnation point. With a poor choice of discrete boundary conditions 
near stagnation, the solutions may not exist on the coarse grids, even if the second order 
accuracy is observed on fine grids. This sensitivity is illustrated in Section 6.1. In the course 
of this work, we have carefully experimented with different formulations of boundary con- 
ditions at stagnation. Compact numerical closure conditions leading to sufficient solution 
accuracy on all uniform, including anisotropic, grids have been found and applied. Even 
with this formulation, convergence on stretched grids with large stretching ratios cannot be 
guaranteed. 

2. Strong coupling between the equations near the boundaries and associated difficulties 
with restricting fine-grid residuals to coarser grids led to  a serious slowdown of multigrid 
convergence rates. This difficulty has been solved by implementing the concept of boundary 
relaxation (Section 4.2). 

3. Initial amplification of the algebraic errors in relaxation was an obstacle to achieving 
the TME goal of solution to  the discretization accuracy in less than 10 minimal work units. 
special downstream marching scheme has been developed (Section 6.2) to avoid amplification 
of the specific errors arising in the full multigrid (FMG) solver. 
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4. Lack of reliable quantitative analytical tools hampered our abilities to optimize multi- 
grid solvers. The analysis of stagnation flows is a difficult task because the simplest model 
problem representative of stagnation is a two-dimensional system of variable-coefficient equa- 
tions. Simplified (one-dimensional or constant-coefficient) analyses proved misleading. pre- 
dicting instability of the formulation and divergence of multigrid iterations that contradicted 
the existing practical experience. The limitations of the classical local-mode Fourier (LMF) 
analysis in application to stagnation-flow problems have been understood; certain restric- 
tions have been applied (Section 5.1). W-ith the imposed restrictions, several important 
areas in the stagnation flow-field cannot be addressed through the LMF analysis. New, 
more general, analysis methods for multigrid solutions of stagnation flows have been devel- 
oped (Section 5.2). These new analysis methods replace one of the complimentary parts of a 
multigrid cycle, relaxation or coarse-grid correction, with an idealized substitute. The meth- 
ods allow multigrid performance to  be probed. similarly to that using the LMF analysis, 
but with far fewer limitations. 

Following this introduction, the paper is organized as follows: Ingredients of TME are 
discussed in Section 2. The governing equations, discretization, and boundary conditions for 
the computational simulations are presented in Section 3. The relaxation scheme, including 
the interior and boundary parts. is discussed in Section 4. In Section 5, analysis methods, 
including the L l l F  analysis and the two new methods developed during the course of this 
work, are described with examples in application to pertinent model problems. In Section 6, 
numericai resuits coniirming attairirrieiii ol' T I E  ~IE, we:: as fast =piptotic coii-v-eigencz 
rates for stagnation flows in different regimes are shown. Conclusions are given in Section 7. 
Examples of simplified. one-dimensional and constant-coefficient , analyses are discussed in 
Appendices A, B, and C. 

2 Ingredients of Textbook Multigrid Efficiency 
The basic framework for nonlinear TME solvers is full multigrid (FMG) algorithms [1,12. 
281. An FbfG-lc algorithm starts the solution process on a very coarse grid, where the 
computational cost of solution is negligible. The coarse-grid solution is then interpolated to  
the next finer grid to form an initial approximation. On the current grid. lc multigrid full 
approximation scheme (FAS) cycles [l, 12.281 (ideally k = 1) are performed to obtain an 
improved solution. This process of obtaining an initial approximate solution from a coarser 
grid followed by FAS cycling continues to finer grids until the solution on the target finest 
grid is achieved. 

The objective of FMG-k algorithms (and TME methods in particular) is an accurate 
discrete approximation to the solution of the differential equations. In this context, the 
solution to  a discrete problem is considered accurate if its algebraic error is below the level 
of the discretization error. The algebraic error is defined as the difference between the exact 
and approximate solutions of the discrete problem. The discretization error is defined as 
the difference between the exact solutions of the discrete and differential problems. 

A major part of a multigrid cycle is relaxation; the role of relaxation in a multigrid cycle 
is to  reduce the error components that cannot be represented in the coarser grids. If the 
target discretization is strongly h-elliptic (or semi-h-elliptic) one can design a local (or block- 
wise) relaxation procedure efficiently reducing all high-frequency error components. By 
definition [2-4,8,28], a discrete constant-coefficient scalar (not necessarily elliptic) operator 
L[u] possesses a good measure of h-ellipticity if the absolute value of its symbol 

is well separated from zero for all high-frequency Fourier modes. Here j = (jz, j g 7 j 2 )  are the 
grid indexes and 6 = (8,,8,,8,),0 5 j&l, ley/, lOZl 5 T are normalized Fourier frequencies. 
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High-frequency Fourier modes are the modes satisfying max(l8,1. 10Y(. l8,l) 2 5. For systems 
of constant-coefficient equations, the measure of h-ellipticity is defined to  be the measure 
of the symbol determinant. For variable-coefficient and nonlinear problems, a measure of 
h-ellipticity can be computed locally as the measure for a problem with constant (frozen) 
coefficients locally approximating the target problem. A good measure of h-ellipticity implies 
that error coniponents with large variations on the scale of the mesh size produce much larger 
residuals than little varying (smooth) error components of the same amplitude. 

Classical multigrid methods, which proved to be efficient for elliptic problems, separate 
the treatment of oscillatory and smooth error components. The former are efficiently re- 
duced in relaxation: the latter are well approximated on coarse grids and. hence, eliminated 
through the coarse-grid correction. The difficulties associated with extending TME for so- 
lution of the Savier-Stokes equations relate to  the fact that these equations are a system 
of coupled nonlinear equations that is not fully elliptic, even for subsonic Mach numbers. 
but contains hyperbolic partitions. The efficiency of classical multigrid methods severely de- 
grades for nonelliptic problems because some smooth characteristic error components cannot 
be adequately approximated on coarse grids [2,9,11,14,28]. These characteristic components 
are much smoother in the characteristic directions than in other directions. 

To be efficient, a multigrid solver for nonelliptic problems has to  adequately address three 
types of errors: (1) high-frequency error components, (2) uniformly smooth error compo- 
nents, (3) characteristic error components. For h-elliptic discretizations, an efficient interior 
relaxation scheme can usually be found. A few sweeps of such a relaxation can reduce high- 
frequency error significantly, by an order of magnitude. Coarse-grid correction is usually 
efficient for uniformly smooth error components. An effective reduction of characteristic 
error components can be achieved either by designing a relaxation scheme to reduce not 
only high-frequency but smooth error components as well (which can be done in many cases 
by downstream ordering of relaxation steps [2,11]) or by adjusting coarse-grid operators for 
a better characteristic-component approximation [9,13,14]. 

3 Incompressible Euler Equations 

3.1 Primitive Formulation arid Solutions 
The set of two-dimensional nonconservative incompressible Euler equations is defined as 

where variables u, u, and p represent the 2-directional velocity, the y-directional velocity, 
and the pressure, respectively. The first and second equations are referred as the u- and 
ti-momentum equations, respectively; the third equation is the continuity equation. A stan- 
dard set of boundary conditions for this formulation is the velocity components specified at  
an inflow boundary, the pressure specified at an outflow boundary, and the tangency condi- 
tion (the normal velocity component is set to zero) defined at a body surface. For several 
exterior-flow problems, exact analytical solutions of the incompressible Euler equations are 
known. 

Plane-stagnation flow is a flow against a solid plane located at  x = 0. The exact solution 
has a form 

u = -ax,  
u = ay, 
p = -a2zz+yz, 

2 

4 

(3) 
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Figure 1. Computational domain for a plane-stagnation flow: 129 x 65 isotropic grid. 
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Although very simple, the plane-stagnation solution characterizes the behavior of general 
flows near stagnation. The solution describes deep stagnation flows, i.e.. flows in (small) 
neighborhoods of the stagnation point. For regular stagnation flows in general geometries, 
the deepstagnation regions comprise small parts of computational domains. A typical 
computational domain for the stagnation plane flow is shown in Figure 1. The inflow 
boundary is defined at the left vertical edge, the outflow boundary is at the horizontal 
edges, and the tangency condition is defined at the plane surface x = 0. 
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Figure 2. Computational domain for flow around a cylinder; Om,, = 4 5 O ,  Omin = 
65 x 65 isotropic grid. 

- 4 5 O ;  

Cylinder flow is a flow around a cylinder of unit radius centered at the origin (x, y) = 
(0,O). The exact solution, with the free stream at infinity characterized by urn = 1.v, = 
O,p ,  = wnst, is defined as 
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where ( ~ , 0 )  are the polar coordinates, r2 = x2 + y2, tan0 = - f .  and = -$ln(r) is the 
stream function with C being a constant. Throughout the course of this paper C = 0. 

A typical computational domain with an isotropic orthogonal grid for a regular cylinder 
flow is shown in Figure 2. The inflow boundary is defined at  the external arc corresponding 
to rmax = 5: the outflow boundary is defined at  the rays corresponding to 0 = 3~45": 
the tangency is defined at the inner circle Tmin = 1. A deep-stagnation cylinder flow is 
characterized by small positive values of 0,,,, ( -emin). and correspondingly small extent 
(rmax - Trnin). 

30 r 

-30c ,-;a ' ' 'A ' '.& ' ' ' % ' 'Ib' I ' io '  ' ' 3'0 
X 

Figure 3. 
isotropic grid. 

Computational domain for flow around a parabola: qmax/qmin = 8; 65 x 65 

Parabola flow is a flow around a parabola with freestream values taken as u, = 1. ti, = 
O,p ,  = const. The exact solution is well known and can be found through a conformal 
transformation x+iy  = z 2 ,  in which the z-plane is defined as z = <+iq. The computational 
domain in the physical plane is determined by a rectangular region in the z-plane as 

( E ,  77) E [Jmin, (rnax] x [qmin, qmax], (5) 
where an isotropic Cartesian grid in the z-plane yields an orthogonal and isotropic grid in 
the physical domain. The surface of the parabola is defined by the line qmin = 1/&. The 
leading edge region is described by a circle of radius 1/2 centered at the origin (2 ,  y) = (0,O). 
The physical point corresponding to a point in the z-plane is given as 

The exact solution is given in terms of (<,q) as 
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The upstream extent of the computational domain in the z-plane is determined by the 
single parameter vmax/vmin- An isotropic. orthogonal grid corresponding to vmax/vmin = 8 
is shown in Figure 3, extending upstream approximately sixty leading edge radii. Smaller 
values of this parameter correspond to domains in closer vicinities of the leading edge. The 
value vmax/vmin = 1.25 corresponds to  the domain extending 25/16 leading edge radii u p  
stream. If extended a similar distance along the parabola curve, the computational domain 
is in a deep-stagnation region and can be characterized closely by the plane-stagnation solu- 
tion. For both the cylinder and the parabola flows, the solution asymptotes to the freestream 
values at upstream infinity. 

Throughout discussions in the paper, a rectangular computational domain with Carte- 
sian isotropic grids corresponding to the plane-stagnation flow (see Figure l )  is assumed. 
For numerical tests reported in Section 6, body-fitted curvilinear coordinate systems (see 
Figures 2 and 3) have also been used. Practical experience showed that the deep-stagnation 
regions. which are well described by the plane-stagnation solutions, represent the most dif- 
ficult part of the flow field. The solution methods found efficient for the plane-stagnation 
flows in the rectangular geometry proved to be fully extendible to more complicated ge- 
ometries. Xumerical implementations of curvilinear grids were straightforward and did not 
introduce any significant complications to the Cartesian case. 

3.2 Pressure-Equation Formulation 
The pressureequation formulation is obtained from ( 2 )  by replacing the continuity equation 
with an equation for t~he pressure 

uuz + vuy + p z  = fu, 

uv, + vuy + p y  = f v ,  
( u , ) ~  + ~ U ~ Z I ,  + (vy)’ + Ap = f,. 

(7)  

The major advantage of this formulation is an easily available h-elliptic collocated-grid dis- 
cretization. Besides the standard set of boundary conditions (the velocities given at the 
inflow, the pressure given at the outflow, and the tangency condition given at the body 
surface), the pressure-equation formulation (7) requires an additional boundary condition 
at the inflow boundary. To ensure the same solution for the formulations ( 2 )  and (7). this 
additional boundary condition is taken as the continuity equation enforced at the inflow 
boundary. This boundary condition can be implemented in a number of ways: a convenient 
choice is through the Neumann condition for the pressure derivative obtained by manipu- 
lating the normal (to the boundary) momentum equation and the continuity equation at 
the inflow boundary: 

p ,  = fu - uuz - vuy = fu - u( fc - vy) - vuy, (8) 

where fu - u(fc - vy) - vuy is a known quantity at the inflow boundary. 
The second-order accurate interior discretization, R(q), of (7) is defined as upwind dif- 

ferencing for the convection operators of the momentum equations and central difference 
approximations for the pressure gradient; in the pressure equation, the standard h-elliptic 
five-point discretization, Ah, is applied for the Laplacian of the pressure, and central differ- 
encing is applied for the velocity derivatives. 

where q = ( u , ~ , p ) ~ ,  and superscripts u and c denote second-order accurate upwind and 
central differences for the first derivatives, respectively. 
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3.3 Discrete Boundary Conditions 
There are two types of discrete boundary conditions. Following [17], discrete approxinia- 
tions to the boundary conditions of the differential equations are called physical boundaq 
conditions. For the pressure-equation formulation, the set of physical boundary conditions 
is defined as the velocity components and the normal pressure derivative given at  the inflow 
boundary, the pressure given at the outflow boundary, and the tangency condition at the 
body surface. 

The boundary conditions required to  complete the discrete formulation are called nu- 
merical boundary conditions or numerical closure equations. Numerical boundary conditions 
are usually implemented as modified discretizations (different from the discretizations in the 
interior) of the target differential equations. The number of numerical boundary conditions 
is determined by the stencils involved in the interior discretization. A detailed discussion 
about relations between the discretization stencils in the interior and the discrete boundary 
conditions can be found in [16]. For the discretization (9): two numerical closure equations 
are required at the inflow boundary and one numerical closure equation is required at  the 
outflow boundary and the body surface. 

3.3.1 

Discretization of the Dirichlet conditions of given velocity components at the inflow bound- 
ary is straightforward. The Keumann conditions of the given normal pressure derivative 
can be implemented explicitly by employing a one-sided difference approximation for the 
normal derivative. With this implementation, the discrete pressure equation is not defined 
at the boundary. An alternative implementation uses two discrete equations for pressure - a 
central approximation for the normal pressure derivative and a modified pressure equation - 
defined at the same boundary point; the pressure value located in the exterior of the compu- 
tational domain is eliminated from these two equations. In the modified pressure equation, 
some velocity derivatives, uy, uyr uz = fc - wyl are computed analytically from the Dirichlet 
conditions for the velocities: the derivative u, is discretized with a one-sided stencil. An 
advantage of the latter implementation is a more compact stencil obtained for differencing 
the pressure at the boundary. From our experience, the choice of implementation of the 
Neumann condition at the inflow boundary is not critical 

The numerical boundary conditions at the inflow boundary consist of two modified mo- 
mentum equations defined at the interior points next to the boundary. The modifications 
involve replacement of second-order accurate upwind difference approximations of the con- 
vection operators with more compact differencing, e.g., central or upwind first-order accurate 
approximat ions. 

Boundary Conditions at Inflow Boundary 

3.3.2 

The Dirichlet condition of the given pressure is discretized straightforwardly. The numerical 
boundary condition is a modified normal-momentum equation at  the outflow boundary. In 
the modified equation, the central approximation to  the pressure derivative is replaced with 
a one-sided approximation. 

Boundary Conditions at Outflow Boundary 

3.3.3 Boundary Conditions at Body Surface 

At the body surface, the physical tangency condition is implemented as explicit assignment 
of the normal velocity component to  zero at the surface. Other quantities a t  the surface are 
computed from the tangential-momentum equation and a numerical closure equation. 

Away from stagnation, the numerical closure equation can be implemented as a one-sided 
discretization of the normal-momentum equation, appearing as below for plane stagnation 
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(u = 0 along the plane surface z = 0) 

a;p = fu - 1111, - Z’U, = fu. (10) 

Analogously to the inflow boundary. an alternative numerical closure equation can be derived 
from the joint formulation of the normal pressure derivative equation and a modified pressure 
equation at the boundary, leading to a one-sided stencil. For plane stagnation. 

where is an upwind differencing that may be first or second order accurate, 3; and aiy are 
central second-order differences approximating the first and second derivatives. respectively, 
and a: is a two-point one sided approximation to the first derivative: the term e (fu - 8;p) 
is a second-order accurate approximation to a,,p under the condition 3;p = fu. 

Sear stagnation, the choice of numerical closure equation is critical for stability, accuracy 
and even existence of the solution. As a particular example, for the first-order discrete 
formulation (9) with the physical tangency condition and a two-point one-sided differencing 
of (10) applied as the numerical boundary condition at stagnation. the Jacobian of the 
formulation becomes singular, while implementing either a second-order differencing of ( 10) 
or the formulation (11) leads to a well behaved Jacobian. hloreover. as numerical tests show 
in Section 6.1. in the presence of a curved geometry. even a non-singular Jacobian does not 
guarantee convergence of the Sewton iterations on coarse grids. 

We consider two types of numerical closure conditions along the tangency boundary, 
referred to as non-compact and compact formulations. Both use the formulation (11) every- 
where along the boundary except that the compact formulation uses two-point, instead of 
three-point, one-sided differencing for the ( 8 : ~ )  term in (11). Also, at the point closest to 
stagnation, both numerical closures do not use the nonconservative tangential-momentum 
equation; instead, a central (finite-volume type) discretization for the quasi-conservative 
tangential-momentum equation is implemented, given in Cartesian coordinates as 

The non-compact formulation uses this quasi-conservative form everlwhere on the body sur- 
face with one-sided differencing of ( U U ) ~  and ux, upwinding of (v2),, and central differenc- 
ing of wy and p, .  The compact formulation uses the nonconservative tangential-momentum 
equation away from stagnation. At stagnation, the compact formulation applies the quasi- 
conservative tangential-momentum equation at a location displaced half a mesh size into 
the interior. Both formulations yield second-order accurate solutions. Numerical tests in 
Section 6.1 demonstrate that convergence of Xewton iterations on coarse grids is much more 
robust for the compact formulation presented above. A simpler, alternate formulation is to 
apply the nonconservative form of both the normal and tangential momentum equations 
everywhere along the body, displaced half a mesh size into the interior. No results are 
shown for this formulation, but in numerical tests, it has proved as effective as the compact 
formulation. 

4 Relaxation Scheme 

4.1 Interior Relaxation 
Development of efficient relaxation schemes for nonlinear problems starts from the Newton 
scheme. A solution update, bq, introduced by a Newton iteration of the nonlinear equation 
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(9) is computed as 

@% is the full Kewton linearization of the operator (9) around a solution q = ( u ,  ~ . p ) ~ .  aq 

where Q" = uaz + ua; is an upwind discretization of the linear convection operator. 
Solving the full Newton linearization at each relaxation step is too costly for practical ap- 

plications. To reduce the computational cost of relaxation without compromising efficiency, 
one can consider a principal linearization. The principal linearization of a scalar equation 
contains the linearization terms that make major contributions to the residual per a unit 
change in the unknown variable. A unit change is defined as a perturbation of the solution 
value at one grid point. The principal terms generally depend on the scale, or mesh size, of 
interest. For example, the discretized highest derivative terms are principal on grids with 
small enough mesh size. For a discretized system of differential equations, the principal 
terms are terms that contribute to the principal part of the system determinant. If the 
underlying solution, q, is smooth and nondegenerate (i.e., the magnitude of the differences 
between solution values in neighboring grid points is less than the local solution magnitude), 
one can obtain a local constant-coefficient approximation to  (14) by frewing the coefficients 
a t  some point in the computational domain 

?la," + a,. + (i3,u) 

2 m d ;  + 2(;3$u)ai 
(W- (15) 

(&")*Ah, (16) 

where bars denote the frozen coefficients. The principal part of the determinant of the 
matrix (15) is 

where Q" = ad: + fiat. For stable discretizations of Q", e.g., first or second order upwind 
discretizations, the operator (16) is h-elliptic if the characteristic of Q" is not aligned with 
the grid. or semi-h-elliptic in the case of alignment. Away from stagnation on fine grids, the 
solution of (9) is expected to  be smooth and nondegenerate; thus, the principal linearization 
of the nonlinear operator (9) is a diagonal matrix 

LE(! Q" 0 " )  
0 Ah 

The property of (semi-)h-ellipticity of (16) indicates that, away from stagnation on fine 
enough grids, there exists an efficient error smoother for (9) that is based on the principal 
linearization (1 7). 

determinant represented as a product of simple scalar factors is called a factorizable scheme. 
According to  this definition, away from stagnation, the discrete scheme (9) is factorizable. 
Factorizability of a discrete scheme significantly simplifies the task of devising an efficient 
relaxation procedure for relaxing the system of equations; this task is reduced to  a num- 
ber of much simpler tasks - designing efficient relaxation schemes for scalar factors of the 
principal-linearization determinant. 

A discretization scheme for a system of nonlinear equations with the principal-linearization 
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One of the main goals of this paper is to demonstrate that, for a factorizable discrete 
scheme. with proper treatment of special regions. it is possible to develop a multigrid solver 
that will be as efficient (in terms of convergence per a minimal work unit) as the best 
available solvers for the discrete scalar factors constituting the principal linearization de- 
terminant. With a relaxation scheme employing a downstream order for the convection 
operators in the momentum equations, the efficiency of such a solver for the system (9) is 
expected to be similar to the efficiency of the corresponding multigrid solver for the scalar 
Laplace equation. 

Formally the interior relaxation scheme can be described similar to the Xewton itera- 
tions (13) as 

The linear operator L inverted ill relaxation is called the driver operator to distinguish it 
from the target operator. R(q), used to compute residuals. The driver operator is based 
on the principal linearization operator (17) with the Laplace operator usually to be relaxed 
rather than solved. A relaxation scheme with the driver (17) is an efficient smoother on 
fine enough grids. It may not. however. guarantee stability for smooth error components. 
For smooth errors, the subprincipal terms of the discrete equations might be as important 
as the principal terms. In some cases, small smooth-error instability may be tolerated. 
assuming efficient reduction of smooth errors in coarse-grid correction with only a few re- 
laxation sweeps to be done per a coarse-grid correction step in a multigrid cycle. In general, 
however, relaxation stability is very important for robustness of multigrid solvers. To im- 
prove' relaxation stability for smooth components, one can add subprincipal terms to the 
principal linearization matrix. Subprincipal terms do not affect the smoothing properties of 
relaxation, but can be very beneficial for improving stability. 

One possible driver operator, L,, for the interior relaxation of (9). includes all the s u b  
principal terms of the momentum equations: 

This standard driver is called the S-driver to distinguish it from the diagonally dominant 
driver (D-driver) that proved to be more efficient for FMG applications, preventing ini- 
tial amplification of algebraic errors in deepstagnation regions (see numerical tests in Sec- 
tion 6.2). The D-driver is defined as 

With either of these drivers, a relaxation sweep in the interior can be performed in 
the following order: (1)  relaxation of the Laplace equation updating the pressure field; (2) 
simultaneous downstream marching of the momentum equations updating the velocity field. 
In special regions, where discretization may switch stencils. (e.g., near the boundaries and 
discontinuities), or the assumptions of smooth and nondegenerate solutions are violated, 
(e.g., near stagnation), all terms of the matrix (14) may become principal: then, the driver 
matrix L coincides with (14). In these regions all the equations are coupled, and, therefore, 
the interior relaxation must be complemented with a boundary relaxation procedure. 
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4.2 Boundary Relaxat ion 

Boundary relaxation represents a general, very important, and often overlooked part of an 
efficient multigrid solver. Here the term boundaq  relaxation denotes any special procedure 
performed in some vicinity of the boundaries. There are a t  least two ways to implement 
boundary relaxation: (1) direct solution of coupled discrete equations and (2) relaxation 
passes throughout the boundary relaxation region, possibly with a relaxation scheme dif- 
ferent from the scheme in the interior. To avoid uncertainty- about sensitivity of multigrid 
convergence to remnants of residuals in the near-stagnation region, we opted to the direct- 
solution implementation of the boundary relaxation. In any event, the additional work 
involved in the procedure is insignificant because the number of grid points (and, therefore. 
the number of discrete equations) in the vicinity of the boundaries is assumed to  be small 
comparing with the total number of grid points in the entire computational domain. In the 
multigrid solver for (9) described in this paper, we use a direct solution of all the coupled 
discrete equations centered within a certain distance (typically, a few mesh sizes) from the 
boundary. An empirical rule we follow in defining the depth of the boundary relaxation re- 
gion is to solve simultaneously all the discrete (physical and numerical) boundary conditions 
as well as all the interior equations that share data with the boundary condition equations. 

The first motivation for the use of boundary relaxation is quite obvious. The discretized 
boundary condition equations are different from the discrete equations in the interior. Com- 
binations of different discrete equations may easily result in a local coupling between the 
equations that can be resolved only by simultaneous solution. A simple example of such a 
coupling is a second-order upwind discretization of the convection operator in the interior 
and a central discretization near the inflow boundary. To start downstream marching in the 
interior, one has to  simultaneously solve the discrete equations defined at the two interior 
points next to  the inflow boundary. For discrete systems of equations, there are instances 
when the interior relaxation cannot be performed near the boundaries. In particular, with 
a first-order upwind discretization of the convection operator, the downstream marching 
of the u-momentum equation linearized around a plane-stagnation solution (3) fails a t  the 
grid point (.E, y)  = (--hZ. 0) next to stagnation. At this point the triangular matrix of the 
linearized convection operator degenerates having zero at  the main diagonal. Some sort of 
boundary relaxation is often required to  provide data. otherwise unavailable, for completing 
the interior relaxation. This type of boundary relaxation should be considered as a part of 
the relaxation scheme. 

Another, less obvious, but not less important. motivation comes from multigrid appli- 
cations. Inaccurate residual transfers in the vicinity of the boundaries may significantly 
hurt the multigrid efficiency. A combination of different discrete equations and a nontrivial 
geometry may create a situation where the correct weights in a residual restriction operator 
may be very difficult (or even impossible) to  compute. A general approach to  avoid such 
difficulties is to apply boundary relaxation, reducing the size of residuals near the boundary 
well below the typical size of the interior residuals. With zero (or very small) residuals near 
the boundary, an accurate residual transfer is no longer important. This type of bound- 
ary relaxation may be viewed as a part of the coarse-grid correction scheme. From this 
standpoint, boundary relaxation reducing the residuals of near-boundary equations may be 
performed just once, before restricting residuals to  a coarser grid, regardless of the total 
number of relaxation sweeps in a multigrid cycle. Numerical tests performed in Section 5.3 
illustrate the significance of boundary relaxation for multigrid efficiency. 

A formal definition of the boundary relaxation procedure used in our multigrid solver is 
solution of the problem (13) over a specified region adjacent t o  the boundary. A critically 
important issue is the choice of the data and equations used at the interface between the 
boundary relaxation region and the interior. Arbitrarily chosen interface conditions might 
lead to an ill-posed formulation and trigger instability of the entire relaxation process. 

. 
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Usually, the correct interface conditions can be derived similar to the conditions applied at 
the actual boundaries of the computational domain. 

For the boundary relaxation region near the inflow. the interface is similar to the out- 
flow boundary. The interior solution is usually required to provide the pressure values at 
the interface: two momentum equations are defined at this interface. In the numerical 
tests reported in this paper, the inflow boundary relaxation has been implemented as a 
simultaneous solution of all the discrete equations defined within a block with all necessary 
downstream data provided by the interior solution. Considering the boundary relaxation 
near the leading-edge surface and (if needed) near the outflow boundary, the interface is 
similar to the inflow boundary. The pressure and velocity data are provided by the interior 
solution and no equations are defined at the interface. 

5 Analysis 
The analysis of stagnation flows proved to be much more difficult task than anticipated 
because the simplest model problem representative of stagnation is a two-dimensional system 
of variable-coefficient equations. In this section. we discuss the limitations of the local-mode 
Fourier (LMF) analysis in applications to flow problems. Other simplified (one-dimensional 
or constant-coefficient) analyses as well as more details on the LMF analysis are given in 

of the formulation and divergence of multigrid iterations that contradicted the existing 
practical experience. Alternative, very general. quantitative analysis methods for multigrid 
solutions are introduced and tested. 

k _ _ ^ _  A:̂ -- A r+ppciiui~ca n - C. T ~ c  iesri!ts of these aii~!yses E S ~  t ; ~  mis!cdi~g, predicting i~t&i!ity 

5.1 Limitations of Local-Mode Fourier (LMF) Analysis 
The classical LMF analysis applied to  a variable-coefficient problem is defined in the follow- 
ing three steps: 

1. Form a set of constant-coefficient approximations. 

2. Analyze each constant-coefficient problem on the infinite (or periodic) domain. 

3. Take the final estimate of the analysis as the worst estimate among all the constant- 
coefficient problems. 

The set of constant-coefficient approximations can be derived by assigning a constant- 
coefficient problem for each possible combination of the variable-coefficient values. It is 
important to  avoid impossible combinations of coefficients. A possible combination is a com- 
bination that corresponds to freezing the variable coefficients at some point in the computa- 
tional domain. In applying a constant-coefficient analysis to a variable-coefficient problem, 
it is a mistake to allow the coefficients to  be changed independently. Allowing impossible 
combinations of coefficients brings in additional computations that are not needed, at least; 
at worst, it may result in completely misleading estimates. 

For many years, the local-mode Fourier (LMF) analysis has been the major practical 
tool for quantitative evaluation of multigrid convergence properties. The analysis is not 
expected to predict the convergence rate of each particular iteration (such rates may be 
strongly dependent on the initial approximation): rather it provides quantitative estimates 
for extreme cases such as the worst possible amplification factor or the asymptotic con- 
vergence rate after many iterations. The most popular multigrid applications of the LhIF 
analysis are estimating the smoothing factor of a relaxation scheme and the amplification 
factor of a two-grid cycle. 
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For estimating the smoothing factor, the LMF analysis computes the relaxation symbol, 
S h ,  which is a square matrix parameterized by the Fourier frequencies. The dimension 
of this matrix depends on the number of Fourier modes coupled in relaxation. Typically, 
the smoothing factor is computed as the spectral radius of the product Ish,  where I is 
the indicator of high-frequency modes, i.e., I is a diagonal matrix that zeroes out all the 
contributions to  the smooth Fourier modes and leaves unchanged all the contributions to  
the high-frequency modes. High-frequency modes are defined according to the coarsening 
strategy. The details of the smoothing analysis can be found in the literature [4,6,24,28.29] 

A symbol of a two-grid ( V I ,  v2)-cycle, Mh, is a square amplification matrix, which is 
computed as 

M~ = s~ ( E ~  - P;L;~R;L~) S Z ,  (21) 

where St, is the relaxation symbol, PtI and RF are symbols of the prolongation and restric- 
tion operators, respectively, E h  is the symbol of the identity operator, and L h  and LH are 
symbols of the fine and coarse-grid operators. respectively. Parameters v1 and v2 are the 
numbers of relaxation sweeps performed before and after coarse-grid correction. See [6,28] 
for detailed discussions on the nature and properties of all these symbols. The asymp- 
totic convergence is estimated as the maximal (over all Fourier frequencies) spectral radius 
of M h .  Different norms of Mh may be computed to  estimate convergence in a separate 
cycle. Xumerous successful applications of this LMF analysis have been reported in the 
literature [4,28,30,31]. 

Certain limitations of the LMF analysis have also been known for a long time. For 
a discretized constant-coefficient differential operator, the analysis assumes an infinite (or 
periodic) domain. It guarantees accuracy only for a Fourier mode satisfying the following 
four locality conditions: 

1. The Fourier symbol of the discrete operator does not degenerate for this mode. This 
condition requires from the discrete operator some measure of ellipticity for the mode. 
The size of the computational domains at which one can observe the convergence 
predicted by the LMF analysis depends on the symbol: the smaller the absolute value 
of the symbol (symbol determinant, for systems) the larger the required computational 
domain. 

2. The typical wave lengths of the mode are much shorter than the corresponding scales 
of the computational domain. An interpretation of this condition suggests existence of 
a rectangular subdomain at  which the considered mode satisfies the periodic bound- 
ary conditions. For characteristic modes, the condition is applied only to the cross- 
characteristic oscillations. Recall, a Fourier mode is called characteristic for a nonel- 
liptic operator, if it is much smoother in the characteristic direction than in other 
directions. 

3. The mode is not significantly affected by the boundary conditions. 

4. The mode is not coupled with nonlocal modes. 

Note, that the estimates of the LMF analysis may be accurate for modes that violate some 
(or all) of the locality conditions; but, then, additional arguments are required to justify 
such estimates. 

The first two and the fourth locality conditions can be directly checked, if a Fourier mode, 
a discrete operator, and a computational grid are given. The third condition may be enforced 
algorithmically. through the iterations that use only local operations, e.g., point Jacobi 
relaxation. In this case. the condition is satisfied for all modes. In iterations with global 
procedures, such as downstream marching or coarse-grid correction, the third condition is 
satisfied for the Fourier modes with relatively short typical wave lengths. For characteristic 
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modes. the third coiidit ion implies relatively high-frequency cross-characteristic oscillations. 
A characteristic mode can be considered as a cross-characteristic wave traveling dong the 
characteristic. One can interpret the third condition as a restriction on the distance that the 
wave can travel in the discrete solution before its amplitude and/or phase are substantially 
changed. This distance is called the penetration distance [15,27] (also termed survival 
distance in [I 11) of the cross-characteristic wave. This penetration distance is determined by 
the frequency of the wave and by the cross-characteristic interactions (e.g., dissipation and 
dispersion) in the discrete operator. To satisfy the third locality condition. the penetration 
distance of the considered Fourier mode in the driver operator should be shorter than (1) 
the characteristic size of the computational domain and (2) the penetration distance of this 
mode in the target operator. 

The infinite grid assumption makes the LlZF analysis intrinsically incapable to predict 
the effects of boundary conditions. On finite computational domains, the choice of discrete 
boundary conditions and the way these conditions are treated in iterations can dramatically 
affect the convergence properties of iterations. A poor choice of boundary conditions may 
lead to  an ill-posed discrete problem. even if the corresponding differential problem is well 
posed. Significant convergence deterioration may occur in the simplest well-known problems. 
e.g.. the Laplace equation. as a result of improper handling of the boundary conditions. See 
an example in Section 5.3.1. 

For the same reason. the LXlF analysis cannot account for the downstream accuracy 
propagation from the inflow boundary that is an important convergence mechanism for 
some nonelliptic problems. (See Section 5.3.3.) The computational domain affected by the 
downstream accuracy propagation may be very large, growing with each iteration. In the 
case of a downstream marching, it may expand to the entire domain in just one iteration. The 
estimates of the LMF analysis for nonelliptic flow problems can, however, be accurate in the 
areas that have yet to be affected by the downstream accuracy propagation from the inflow 
boundary. (See Section 5.3.2 and [15.31].) For iterative solvers of hyperbolic problems, e.g., 
non-marching multigrid methods for the convection equation, LMF analysis estimates are 
usually accurate for the initial convergence; eventually. the accuracy propagated downstream 
from the inflow boundary extends over the entire computational domain. Some modifications 
of the LXlF analysis, such as a half-space analysis of the first differential approximation 
(FDA analysis) [2,11] and a discrete half-space analysis [15], have been developed to take 
the boundary conditions into the account. 

For uniformly elliptic problems, there is no downstream accuracy propagation: the effect 
of boundary conditions may be localiied and separated from the interior. It has been 
rigorously proved [5,6] that the convergence rate predicted by the LMF analysis can be 
observed in actual computations with a proper treatment of boundary conditions on large 
enough grids. 

Another serious limitation of the LMF analysis is the constant-coefficient assumption 
itself. A rigorous LMF analysis for uniformly elliptic variable-coefficient problems has been 
considered in [5]. Accuracy of the LMF analysis extension to general variable-coefficient (or 
nonlinear) problems is limited by the accuracy of constant-coefficient approximations to the 
target problem. In this context. approximation means that the values of actual (variable) 
coefficients do not deviate significantly from a constant state on a certain scale called the 
scale of coeficzent variation. 

There are many ways to measure how well a constant coefficient formulation approxi- 
mates a variable-coefficient one in a certain region. Here, we adopt a very strong requirement 
that limits variation in each variable coefficient separately. Let C~(X) be variable coefficients 
of the operator L,, and 
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be values of Ck(x) frozen at the point xo = ( T O ,  yo). We regard the constant-coefficient 
operator L, obtained by freezing coefficients of L, as approximating L, in the vicinity of 
the point xo with a relative accuracy E. if there is a non-vanishing neighborhood, f2z;s2 = 

{x = (z,y), /z -  TO^ < SI ,  ly - yo/ < SZ}, such that, within this neighborhood, 

IC: - Ck(X)/ < EIC!3, (23) 

for any coefficient Ck(x) of L,. The rectangular domain Rz;"2 is called the E-neighborhood 
of the point xo . 

I/ 
E- NEIGHBORHOODS e = 0 5 STAGNATION 

POINT 

Figure 4. Model variable coefficient operator (24): E-neighborhoods corresponding to E = 0.5 

For any chosen E. the values of s1 and s2 provide the scales of coefficient variation 
at which the constant-coefficient problem approximates the variable-coefficient one with 
the relative €-accuracy. Reasonable values for E are between zero and one, with E = 0.5 
considered as a good practical value. See Figure 4 for illustration of typical +neighborhoods 
for a variable-coefficient convection equation 

-xu, + yu, = 0. (24) 

For the variable coefficients frozen at the point xo = (20, yo) one should confine the LhtF 
analysis to a computational subdomain that is located entirely within the E-neighborhood 
of the point XO. If an E-neighborhood is smaller than several mesh sizes in each dimension, 
the E-neighborhood is considered vanishing; the LMF analysis should not be applied at  this 
neighborhood. Implementation of the E-neighborhood concept together with an assumption 
on the minimal number of mesh intervals sets some lower bounds on the coefficient-to- 
meshsize ratios, eg. ,  the bounds > 2,v > 2 occur for (24) with E = 0.5 and a 
minimum of two mesh intervals in each direction per E-neighborhood. 

Note that the union of all non-vanishing +neighborhoods may not cover the entire com- 
putational domain. Restricting the scope of the LMF analysis to  the non-vanishing E- 

neighborhoods emphasizes that the analysis avoids the parts of the domain where it might 
be inaccurate. 

A sequence of four steps proposed for obtaining a reliable convergence estimate by the 
LMF analysis is defined as 
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1. 

2. 

3. 

4. 

Go through all the grid nodes and define the +neighborhood for each node. Retain 
only non-vanishing c-neighborhoods with the required minimuin of mesh intervals in 
each dimension. 

Compute the Fourier s-ymbol of the iteration for the operator with frozen coefficients 
at each E-neighborhood. 

For each E-neighborhood, define the set of acceptable Fourier modes that satisfy the 
locality conditions. 

Compute the convergence estimate at each E-neighborhood as the maximum taken 
over all the acceptable Fourier modes. The final convergence estimate is taken as the 
maximal (worst) estimate among all c-neighborhoods. 

Examples of the LhlF analysis illustrating the limits of its applicability to variable-coefficient 
problems are shown in Section 5.3. While very useful in many applications. the limitations 
of the LXIF analysis make it inapplicable to many important computational problems, such 
as problems with large coefficient variation, complex geometries, and unstructured grids. 
Other, more robust. analysis techniques must be applied. Two such techniques, the IR and 
ICG analyses. are discussed in the next Section 5.2 

5.2 Ideal Relaxation (IR) and Ideal Coarse-Grid (ICG) Iterations 
A typical approach to analyzing complex problems is based on the following steps: (1) iden- 
tification of contributors to  different aspects of the problem, (2) formulation of simplified 
models to isolate each identified contributor, (3) solution of the simplified models, (4) ex- 
tension of the solutions to actual problems that cannot be directly analyzed. In application 
to iterative methods, such an approach often leads to  dramatic improvements in conver- 
gence. However, if the actual difEculty is represented not by a single object or phenomenon, 
but rather by interactions between several (or many) objects and phenomena, analytically 
solvable models of such interactions are scarce. 

In this section, we propose an alternative approach to analyzing multigrid methods aim- 
ing at developing enabling tools for practical CFD solvers. This more generally applicable 
approach is to apply an available, non-perfect solver to  deal with a practical problem in 
its entirety and. then. to isolate. identify, and improve the parts of the solver responsible 
for the less-than-optimal performance. The iterative solution method to be analyzed is a 
two-grid cycle. i%-e focus on analyzing the main complimentary parts of the cycle: relaxation 
and coarse-grid correction: the restriction and prolongation operators can also be analyzed, 
but currently are assumed given (as bi-linear prolongation and its adjoint full weighting 
restriction) and suitable for efficient multigrid solution. In the proposed analysis, idealized 
iterations probing the two-grid cycle are introduced. In these iterations, one part of the 
cycle is actual and its complimentary part is replaced with an ideal imitation. For IR it- 
erations, the coarse-grid correction part is actual and an ideal relaxation is employed; for 
ICG iterations, the relaxation scheme is actual and the coarse-grid correction is imitated. 
Ideal imitation does not necessarily mean the most efficient operation, it rather reflects our 
understanding of what role the given part of the cycle plays in the solution process. 

The analysis is helpful for identifying what can be done to improve a multigrid solver 
with unsatisfactory convergence rates. The iterations are very general and can be directly 
applied in the most complicated situations including highly variable (or nonlinear) coeffi- 
cients, complex geometries, and unstructured grids. IR iterations may be applied to cycles 
with many grid-levels as well, not only to  a two-grid cycle. The results of this analysis are 
not single-number estimates, they are rather convergence patterns of the iterations that may 
either confirm or refute our expectations indicating what part of the actual solver should 
be improved. 

. 
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The traditional role for relaxation in a multigrid cycle is to smooth errors. Thus, a 
possible ideal relaxation (IR) imitation is an explicit averaging procedure, e.g., replacement 
of the algebraic errors, e,,,. with their full-weighted averages, FWe,,, : the algebraic errors 
are zeroed at the boundaries, where the solution values are given, and averaged for other 
boundaries, where equations are given. 

FWe,,,, ( 2 , ~ )  E interior, 

FWle,,,, (z,]) E boundary (other), 
e:,:w = { 0, (2 .3)  E boundary (given solutions), (25) 

where FIY in the two dimensions is defined as 
- 1  1 

(26) 
FWe,,, = q,, + g (e7+i,3 + ez--l,, + ~ , ~ + 1  + e2,,--1) 

+E (e2+1,,+1 + e2+i,,-i + ez--l,,+l + ez-1,3-i) ; 

and Furl denotes a one-dimensional averaging along the boundary. This ideal relaxation is 
operator-independent, i.e., its action does not depend on what discrete operator is relaxed. 
The smoothing rate of this averaging procedure is 0.5, matching the smoothing rate of the 
lexicographic Gauss-Seidel relaxation for the five-point Laplacian. At least three averaging 
sweeps (25) should be performed in an IR iteration (regardless of the type and number of 
relaxation sweeps in the actual two-grid cycle) to  provide error smoothing acceptable for a 
Th4E solver. 

An ideal coarse-grid (ICG) correction imitation is a coarse-grid representation of the 
local full-weighted averages of the algebraic errors (25): this ICG correction is prolonged to 
the fine grid by bi-linear interpolation. The ICG correction is also operator-independent. 
In the two dimensions, the algebraic errors are updated as 

new 
%i,2j  FWe22,2, , 

enew - 1 
2 , - 1 , 2 ~ - 1  - e22-1,2,-1 - 3  (FJVe22-2.23 + F W r e 2 2 - ~ . 2 3 - 2  

+ F W ~ Z , , ~ ~  + FWezt,2,-2). 

The ICG scheme (27) may serve as a generalized indicator of high-frequency components 
for smoothing analysis (cf. operator I in the LMF smoothing analysis, Section 5.1). It 
also closely relates to the compatible relaxation scheme where the coarse-grid variables are 
chosen as full-weighted averages. 

There are only two requirements for application of the IR and ICG iterations: The first 
condition is that the exact discrete solution should be available on demand for computing 
algebraic errors. This requirement is not very restrictive because for analysis purposes one 
can create a manufactured solution of the target operator with a modified source function. 
In particular, for linear problems, one can conveniently analyze the case where the exact 
solution is identical zero. The second condition is that an averaging procedure, such as F W  
in (26), should be defined at each grid node. A similar procedure must be derived for the 
residual restriction anyway. In many cases, some weighted combination of the neighboring 
values would be acceptable. With given restriction and prolongation operators, Rf  and 
Ph, the ICG correction can be written as 

In the IR iterations, (part of) the usual relaxation in a two-grid cycle is replaced by the 
explicit averaging of algebraic errors (25) applied three times. The coarse-grid correction is 
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the actual coarse-grid correction employed by the cycle. In the ICG iterations, the actual 
cycle is simulated with the actual relaxatioii sweeps: the coarse-grid correction is replaced 
with the explicit redistribution (27) of local averages of algebraic errors. 

Considering the situation in which convergence of the actual two-grid cycle is not sat- 
isfactory. the following conclusions can be made from the two possible outcomes of the IR 
analysis: 

The convergence of IR iterations is  unsatisfactory. The coarse-grid correction does 
not sufficiently reduce at least some of the smooth error components and needs im- 
provements. As shown in examples from Sections 5.3, boundary relaxation may help 
to  overcome this difficulty. 

The convergence of IR iterations is  satisfactory. The coarse-grid correction scheme 
works well. The relaxation smoothing rates of the actual cycle need to  be improved. 
Alternative relaxation scheme may be considered. Another option is to perform more 
relaxation sweeps. 

The possible outcomes of the ICG analysis are 

The convergence of ICG iterations is unsatisfactory. The relaxation scheme does not 
sufficiently smooth the algebraic errors and needs to be improved. 

The convergence of 1 CG ztemtzons 2s satzsjactory. The reiaxation scheme works weii. 
The coarse-grid correction scheme of the actual cycle needs to be improved. 

As shown by examples in Section 5.3, the analysis methods employing ideal imitations are 
sensitive to very delicate details of the tested two-grid cycles, clearly indicating what part 
of the algorithm could be improved. 

5.3 Examples of Analyses 
5.3.1 Example 1: Laplace Equation 

In this section. the IR and ICG analyses are applied to the Laplace equation defined on a 
square domain (x. y) E [0,1] x [O. 11 with one Yeumann boundary condition at z = 1 and 
Dirichlet conditions at other boundaries. The Laplacian is discretized on a uniform 65 x 65 
grid with the standard five-point stencil. The Neumann boundary condition is discretized 
with a three-point one-sided differencing. The solution method is a two-grid (1,2)-cycle with 
lexicographic point Gauss-Seidel relaxation, full-weighting residual restriction, and bi-linear 
prolongation. At the end of the relzxation sweep, the residuals of the Xeumann equations 
at the boundary are zero. Three sweeps of the averaging procedure (25) are applied in an 
IR iteration. The ideal coarse-grid correction is described in (27). 

Figure 5 shows the residual convergence rates for the actual two-grid (l,%)-cycle and 
for the corresponding IR and ICG iterations. For the actual two-grid (1,2)-cycle, the LMF 
analysis predicts the convergence rate of 0.12 per cycle. The observed convergence rate of 
the actual two-grid cycle is 0.20, significantly worse. Better rates observed in both the ICG 
and IR iterations indicate that there are two different ways to accelerate convergence of 
the two-grid cycle. One possible approach is to design a local relaxation procedure at the 
Neiimann boundary that smoothes the error at the boundary (not necessarily enforcing zero 
residuals) without producing large residual spikes at the neighboring interior points. This 
approach would correspond to an improved relaxation procedure. An alternative approach 
we follow is improving the coarse-grid correction by performing boundary relaxation near 
the Xeumann boundary. 

In the version of boundary relaxation. BRK,  used in this algorithm, all the equations de- 
fined at K grid lines adjacent to the Neumann boundary are relaxed simultaneously; depth 
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Figure 5. Convergence rates for the Laplace equation with Neumann boundary conditions. 
No boundary relaxation. 
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Figure 6. Asymptotic convergence rates for the Laplace equation with Neumann boundary 
conditions. Boundary relaxation is applied once before residual restriction 

K = 1, corresponds to  simultaneous relaxation of just the boundary equations. Without 
boundary relaxation, the full-weighting residual restriction near the boundary is inaccurate 
and degrades the quality of the coarse-grid correction. With zero residuals in a boundary 
vicinity, an accurate residual restriction is no longer important. The boundary relaxation 
procedure is performed once per cycle before restricting residuals to  the coarse grid. Figure 6 
illustrates the sensitivity of the asymptotic convergence rate to  the depth of the boundary 
relaxation region for the actual two-grid (1,2)-cycle and the IR iterations; the ICG itera- 
tions are not sensitive at all to the presence of boundary relaxation. The test results can be 
summarized as follows: For small depths of the boundary relaxation region, 0 5 K 5 3, the 
convergence rates of both iterations are not satisfactory. For K 2 4 the desired convergence 
rates of 0.12 per cycle are achieved. The performance of iterations is not sensitive to  further 
expansions of the boundary relaxation region beyond K = 4 and, thus, the value K = 4 is 
considered optimal. Note that convergence rates of the two-grid (1,2)-cycle are better than 
the rates of the idealized IR iterations. This is not actually surprising: For the interme- 
diate error components, that are neither high-frequency nor very smooth, the coarse-grid 
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correction has a limited efficiency. The overall convergence rates for these coniponents are 
significantly dependent on relaxation. The Gauss-Seidel relaxation outperforms the ideal 
averaging procedure (25) in reducing the intermediate components. 

5.3.2 Example 2: Constant Coefficient Convection Equation 

Convergence deterioration in multigrid solutions for nonelliptic equations related to poor 
coarse-grid correction for the characteristic error components have been observed and ex- 
plained long ago [2,9,11,14]. Recall that the characteristic components are smooth functions 
that are much smoother in the characteristic directions than in other directions. The reason 
for the convergence slowdown is that the main residual contribution from a characteris- 
tic error component is made through the numerical cross-characteristic interactions in the 
discretization. These interactions are typically much larger on coarser grids. Thus, the 
amplitude of the correction to the characteristic error component computed on a coarse 
grid is much smaller than the amplitude of the error itself. This explains why the coarse- 
grid correction is limited for characteristic error components. The theoretical estimates of 
multigrid performance for nonelliptic operators can be computed, for example, by the LMF 
analysis [31] or by FDA analysis [2.9,11.14]. 

However. many researchers observed convergence rates of multigrid solvers for nonelliptic 
operators that are much better than predicted by the theory. Even textbooks report results 
that seemngiy outperform the theoreticai predictions. (See. for exampie. iZS] Sectiori 7.2.1 
for convergence of a multigrid solver for a first-order discretization of convection equation. 
The convergence of about seven orders of magnitude over 14 multigrid cycles is significantly 
better than the convergence of 0.5 per cycle predicted by the theory.) 

The discrepancies between theoretical estimates and convergence rates observed in nu- 
merical tests for nonelliptic equations usually occur when a test problem fails to isolate 
characteristic errors. In multigrid solutions of hyperbolic equations, there exist two parallel 
processes affecting convergence of iterations: (1) a local error reduction through smooth- 
ing and coarsegrid correction and (2) a downstream accuracy propagation from the inflow 
boundary. The theoretical bounds for the multigrid performance based on estimates for 
convergence of characteristic error components relate exclusively to the first process of local 
error reduction. However, the impact of the accuracy propagation process may be very 
significant, overshadowing the local error reduction. In the extreme case of downstream 
marching. the accuracy may propagate throughout the entire computational domain in just 
one iteration. Even relaxation schemes that do not rely on a downstream order usually pro- 
vide a downstream accuracy propagation of a few (or one) mesh sizes in a relaxation sweep. 
,4n analysis estimating the number of defect-correction iterations required to propagate ac- 
curacy across the domain has been reported in [15]. After enough relaxation sweeps. the 
accuracy may propagate from the inflow boundary to the outflow boundary; the (asymp 
totic) convergence of multigrid iterations may become extremely fast, up to several orders 
of magnitude in error reduction per iteration. This fast convergence, however, is offset in 
practice because the number of iterations required to  arrive at this asymptotic convergence 
regime grows with the size of the problem. Away from the inflow boundary. in the regions 
that are not reached by the downstream accuracy propagation, the multigrid convergence is 
bounded by the convergence of the characteristic error components and closely follows the 
theoretical prediction. In typical numerical tests. the distance from the inflow to the outflow 
boundaries along the characteristics may be different in different parts of the domain. Thus, 
the overall multigrid convergence is a mixed result of both the processes; the downstream 
error propagation determines convergence at the (growing) region adjacent to the inflow 
boundary, and the local error reduction provides convergence in the regions remote from 
the inflow boundary. 

In this section, we analyze a multigrid solver for the standard first-order accurate upwind 
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discretization of the constant-coefficient convection equation 

a,". + 8;. = 0, (29) 

where 8," and 8; are two-point upwind differencing for the x and y derivatives, respectively. 
The rectangular computational domain is covered by a uniform Cartesian grid with the char- 
acteristics aligning with the diagonal direction. The solver is a two-grid (1,2)-cycle including 
full coarsening, a red-black relaxation scheme with an under-relaxation parameter w = 0.8, 
full-weighting residual restriction, and bi-linear prolongation. In the first experiments, the 
coarse-grid discretization is identical to the discretization on the fine-grid. For this two-grid 
cycle. the LYIF analysis predicts convergence rates limited by coarse-grid correction for the 
characteristic error components to be 0.5 per cycle, while the relaxation smoothing factor 
is 0.52. 

+ IR iterations 

1 1 -+ ICG iterat ion4 

Iterations 
p 1 6 8 10 1 1  1. 16 i e  20 
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Figure 7 .  Convergence rates for a first-order discretization of the convection equation with 
periodic boundary conditions in the y-direction. Standard coarse-grid discretization. Grids 
1025 x 65 (left) and 65 x 65 (right) 

L .  ' I  

Figure 8. Error surface after 20 (left) and 40 (right) two-grid (1,2)-cycles for a first-order dis- 
cretization of the convection equation with periodic boundary conditions in the y-direction. 
Grid 1025 x 65 

The numerical tests including the two-grid (1,2)-cycle, IR iterations, and ICG iterations 
have been performed on two uniform grids, 1025 x 65 (domain 16 x 1) and 65 x 65 (domain 
1 x l), with the zero inflow boundary condition at  x = 0 and periodic boundary conditions 
in the y-direction. The initial approximation is random except for one two-grid-cycle test on 
the grid 65 x 65. In this latter test, the initial approximation is a collection of characteristic 
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errors. The ideal relaxation and ideal coarse-grid correction have been implemented as (25) 
and (27), respectively. Convergence rates of the two-grid (1,2)-cycle on the larger grid (left 
plot in Figure 7) are close to the 0.5 per cj-cle predicted in the LMF analysis. Convergence 
on the smaller grid (right plot in Figure 7) is significantly better than the LMF analysis 
estimate. 

The surface of the algebraic errors after many iterations (see Figure 8 for error profiles 
after 20 and 40 iterations for the larger grid) reveals the reason for this discrepancy: the LhlF 
analysis ignores the accuracy propagation from the inflow boundary. The characteristic error 
Components dominate the region remote from the inflow boundary that is not affected by 
the downstream accuracy propagation. Note the highly compressed scale in the x-directions; 
the error surfakes are composed of smooth waves slowly oscillating in the cross-characteristic 
direction. The accuracy propagation affects a significantly larger region as more iterations 
are performed: it becomes a dominating convergence mechanism on small grids. Xote that 
the LMF analysis may still be used for estimating a *.worst-case" scenario. The right plot 
in Figure 7 shows one test on a 65 x 65 grid with the initial error imposed as a collection of 
characteristic components: the initial convergence is close to the 0.5 predicted by the LMF 
analysis. 

" I  025 
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Figure 9. Convergence rates for a first-order discretization of the convection equation with 
periodic boundary conditions in the y-direction. Grid 1025 x 65. Modified coarse-grid 
discretization 

IR and ICG iterations provide very useful information about components of the cycle. 
Convergence of IR iterations for the analyzed two-grid (1,2)-cycle displayed in Figure 7 is 
not satisfactory. Therefore, significant acceleration may be achieved with a better coarse- 
grid correction. As shown in [9,13,14,18], one can improve the coarse-grid correction scheme 
by modifying the coarse-grid operator to match the fine-grid (characteristic-component) first 
differential approximation. In tests demonstrated in Figure 9, the coarse-grid discretization 
has been modified as 

h 
4 

2; = a," + -a;z, 

where @ is a modified discretization of the x-derivative, a," is the first-order upwind dis- 
cretization, and a& is the first-order accurate three-point upwind discretization of the second 
derivative. The discretization of the y-derivative has been modified accordingly. Conver- 
gence rates of the two-grid (1,2)-cycle are improved significantly to 0.27 per cycle; the rates 
of IR iterations are also improved (see Figure 9). 
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ICG iterations converge with a better rate of 0.21 per cycle. One can consider this rate as 
an ideal rate that can be achieved by improving the coarse-grid approximation but, maintain- 
ing the original relaxation scheme, coarsening strategy (full coarsening), and prolongation 
operator. To achieve the ICG rates, the coarse-grid operator should be further modified to  
provide an even more accurate approximation to the fine-grid operator. One should carefully 
consider the trade-off between the improved convergence rates and additional complexity of 
the operators. 

5.3.3 Example 3: System of Constant-Coefficient Partial Differential Equations 

In this section we analyze a two-grid solver for a system of constant-coefficient equations 
(15) related to the the full Newton linearization around the plane-flow solution (3) with 
a = 1. The system of constant-coefficient differential equations is formulated as 

L(q) = (31) 

where q = (u. ~ , p ) ~ ,  Q" = tit3;+tZ$, and 
domain is a rectangle (2, y) E [-ti - X, -fi + X ]  x [e - Y,  6 + Y-1 with 

and are positive constants. The computational 

The latter conditions to be referred as compatible-coeficient restrictions are introduced to  
insure that the constant-coefficient problem provides a good relative +accuracy ( E  = 0.5) in 
approximating the full-Yewton linearization of the plane flow in the vicinity of x o  = (-ti. v).  
A uniform Cartesian grid with a minimum of four mesh intervals in each spatial direction 
is applied. The physical boundary conditions are the following: u ,v ,  and i3,p are given at 
the inflow x = -fi - X ;  p is given at  the outflow x = - E  + X :  periodicity is assumed in the 
y-direction (q(x. V - Y )  = q(z, 2'+Y)). The normal derivative of p at the inflow boundary is 
discretized with the three-point one-sided stencil. The numerical closure equations include 
central differencing for the x-derivative in the operator Q" at  the interior grid points adjacent 
to the inflow boundary: the x-derivative of the pressure in the first momentum equation is 
discretized with the three-point upwind stencil at the outflow. The exact solution of the 
problem is q 0. 

The relaxation scheme consists of three steps: 

(i) Line-implicit Gauss-Seidel relaxation is performed for the Laplace operator in the 
pressure equation with frozen u and TJ. In this relaxation, all the pressure equations 
defined at a vertical grid line with the same z-coordinate are relaxed simultaneously; 
this y-implicit relaxation scheme proceeds in the upstream direction, from the outflow 
to the inflow. 

(ii) The boundary relaxation, BRs, is performed near the inflow boundary. All the equa- 
tions defined at the five grid lines adjacent to the inflow boundary (the boundary 
included) are solved simultaneously. Values of u, v, and p in the interior beyond the 
boundary relaxation region remain unchanged. 

(iii) The momentum equations are downstream marched with the S-driver (19) for u and 
v with p being fixed. 

At the end of the relaxation sweep, the residuals of the momentum equations are zero. 
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The Fourier symbol of this relaxation scheme is computed as 

s h = (  :,: 1 0 0  ; ) - (  
0 GSh -23s 28; A h  

8, and 8, are normalized Fourier frequencies. JB,I 5 7 r ,  10yl I x. The smoothing factor, p ,  
is 

where P ( S h )  is the spectral radius of the matrix S h ,  and the maximum is taken over the set 
of high-frequency Fourier modes {(e,. OY). max( 18,1, [O,l) 2 7r/2}. 

restrictions (32) applied. This analysis predicts divergence of the relaxation scheme for high- 
frequericy ermi wiupwieiits. Foi GZ = ii/2.0n~ = -ii/2, aiii: 4 - 4 = 1. *L- L L l C  C W I I V r ; L b l " I I  -------A;,.- 

symbol Q = 1 and the smoothing factor p(Sh) = m. Imposing the compatible-coefficient 
restrictions (32) together with the assumption that there are at least four mesh intervals in 
each dimension effectively implies a 2 4, f 2 4. With these restrictions, the LMF analysis 
predicts the smoothing factor of 0.53 on the 4 x 4 grid and factors better than 0.5 at finer 
grids converging to 5; the latter is the smoothing factor of the line relaxation for the scalar 
Laplace equation. 

= 1, the LMF analysis restricted by (32) predicts the amplification of the 
two-grid cycle to  be greater than one indicating divergence. This amplification factor is 
predicted for specific. isolated smooth characteristic components 8, = -By ,  0 < 18, I < $ 
that may vary as the grid is refined. The LAIF analysis does not account for the accuracy 
propagation from the inflow boundary, that is a major convergence mechanism for this two- 
grid cycle. Employment of a downstream marching in the relaxation scheme on a domain 
restricted as (32) ensures that the characteristic modes. for which the LMF analysis predicts 
divergence, are strongly affected by the inflow boundary. 

Figure 10 shows the convergence rates of the Lz-norm of the pressureequation residuals 
for the four iterative methods solving the problem (31) with U. = E = 1 on the computational 
domain (2, y) E [-:, - + I  x [E, g] covered by the uniform isotropic 257 x 33 Cartesian 
grid. The plot marked "Two-grid (1, 2)-cycle" shows the convergence rates of a cycle 
solving (31). The two-grid cycle includes the three-step relaxation scheme described above, 
full coarsening, full weighting residual restriction, bi-linear prolongation, and the coarse- 
grid discretization identical to (31). ICG iterations keep the actual relaxation scheme, but 
employ an ideal coarsegrid correction for all variables computed as in (27). The IR iterations 
employ the ideal relaxation procedure (25) instead of the actual relaxation sweeps. The IR 
iterations of the first type, IR-p iterations, idealize smoothing for the pressure only. This 
ideal relaxation replaces the step (i) in the relaxation scheme with averaging algebraic errors 
in the pressure, employing three iterations of (25). To illustrate the critical role played by 
the downstream marching in the cycle, we experimented with another type of IR iterations, 
IR-all iterations. where all three steps (i)-(iii) are replaced by averaging (25) for each of u, u, 
and p ;  thus, no downstream marching is performed. 

ICG iterations and IR-p iterations provide a very accurate estimate for the convergence 
of the actual cycle. The convergence rates of the ICG iterations and the two-grid cycle 

p = rnaxP(Sh). (35) 

The unrestricted LMF analysis considers the infinite domain with no compatiblecoefficient 

For fi = 

25 



- --1 0 7  I 

E 1 I +?- Two-grid (1, 2)-cycle 1 
+ IR-p iterations 1 1  + IR-all iterations I 

5 02 .- 
3 
0 w 
g 0 1  

2 a o  

3 
(0 VI 

5 10 15 

Iterations 

Figure 10. Convergence rates of the pressure equation residuals in solutions of the constant- 
coefficient problem (31). Grid 257 x 33. 

are virtually indistinguishable: the IR-p convergence rates are predictably somewhat worse 
because. as mentioned previously, line relaxation damps intermediate error components 
significantly better than the ideal relaxation. M’ith (not shown) progressive grid refinement, 
the convergence rates of the IR-all iterations tend to  the value 0.75; this is in agreement 
with the L51F analysis predictions for convergence rates of full-coarsening multigrid methods 
applied to a second-order discretization of the convection equation. 

Although not shown in the figure, on larger domains (e.g., [-5,3] x [i, ; I ) ,  accuracy 
propagation from the inflow boundary does not dominate over the entire computational 
domain; divergence of the two-grid cycle is indeed observed in numerical tests as predicted by 
the LMF analysis. However. on such domains, the compatible-coefficient restrictions (32) are 
violated. and. therefore. the formulation (31) does not provide a relevant constant-coefficient 
approximation to the variable-coefficient problem (14). 

6 Numerical Tests 

6.1 Convergence of Newton Iterations 

Certain difficulties with solution of the coarse-grid discretizations have been observed in 
numerical tests, even if the Xewton method is used as the iteration scheme. The larger 
discretization errors on coarse grids adversely affect the convergence of Newton iterations, if 
solutions can be found. For example. a transient solution may violate intended steady state 
boundary conditions, such as outflow conditions at a downstream boundary. Sometimes, 
solutions cannot be found with the usual initial approximations, such as freestream values, 
exact continuous solutions, or coarser-grid solutions. 

Typical convergence results are shown in Table 1 for Newton iterations for flow over a 
parabola with the computational domain extending 32 nose radii upstream and a comparable 
distance from the leading edge to the downstream boundary. The maximum discretization 
error in u and the number of iterations to converge residuals to  the machine zero are pre- 
sented versus the grid size. Results are shown for non-compact and compact formulations of 
numerical closures a t  the tangency boundary described in Section 3.3.3. The initial approxi- 
mation for the Newton iterations is either injected from the exact solution of the differential 
problem, or interpolated from the solution on the coarser grid. 
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I ?;on-Compact Sumerical Closure 

I Grid I 9 x 9 

I I I Sewton Iterations. Initial Annroximation: I 
- -= I - -  ~ ... 

Discr. Error 
SO solution y o  convergence I x o t  amlied 

Differential Solution I CoarscGrid Solution 

1 7 x  17 
33 x 33 
65 x 65 

129 x 129 

., x 1  

0.4605 10 Sot  applied 
0.3627 10 S o  convergence 
0.02458 6 So convergence 
0.00575 5 7 

Grid 
Newton Iterations, Initial Approximation: 

Differential Solution I Coarse-Grid Solution Discr. Error 
9 x 9 

1 7 x  17 

Table 1. Parabola flow: L,-norm of the discretization error in u and the number of Sewton 
iterations to converge residuals to machine zero. 

0.29 6 Sot  applied 
0.15 6 6 

For the non-compact numerical closure, a solution on the coarsest grid (9 x 9) could 
not be found. The Sewton iterations on the finer grids were able t o  converge starting 
from the exact differential solution. On the grids 33 x 33 and 65 x 65, however, the initial 
approximations interpolated from the coarser grid solutions led to transient solutions that 
violated the outflow conditions. For the compact numerical closure, the iterations converged 
to machine-zero residuals on all of the grids with either initial approximation. Note that on 
fine enough grids, Newton iterations converge fast for both the formulations. The particular 
examples cited here are rather extreme; the angle subtended by the grid at the leading 
edge is on the order of seventy degrees on the 17 x 17 grid. However, the examples are 
representative of problems encountered during the course of this study. 

33 x 33 
65 x 65 

129 x 129 

6.2 Amplification of Algebraic Errors in Stagnation Region 
Fast asymptotic convergence of a multigrid solver does not guarantee TNE: the algebraic 
errors should be reduced below the level of the discretization errors in the very first multigrid 
cycle on a given grid. The algebraic error reduction in the first multigrid cycle may depend 
on the initial solution approximation. For instance, if the initial solution approximation 
contains large pressure gradient errors, the velocity updates computed from relaxing the 
momentum equations with a fixed pressure field may significantly amplify the algebraic 
errors in velocities. Numerical tests for deep-stagnation flows in curved geometries with 
the S-driver (19) relaxation scheme and pointwise Gauss-Seidel relaxation for the Laplacian 
have indicated insufficient accuracy of FMG-1 solutions: FhlG-2 solvers have been required 
to achieve the solutions with algebraic errors less than the discretization errors. Below in 
this section, we discuss the reasons for the error amplification in relaxation and propose 
adjustments in the downstream marching scheme to contain the amplification and recover 
the accuracy of FMG-1 solutions. 

As discussed in Section 4, the relaxation scheme for the nonlinear system (9) computes 
solution updates by iterating a system of linear equations (13) with the right-hand side 
computed from the current nonlinear solution approximation, q, and fixed throughout the 
relaxation procedure. The system (13) is not solved to zero residuals; an approximate 

0.055 6 7 
0.01796 5 6 
0.00536 5 5 
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solution, &j = (&,&,&I), with certain algebraic errors E = (E", E" .  E P ) ,  is updated in the 
relaxation procedure. A typical initial assignment is $q 0. Recall. that the algebraic 
errors are differences between the exact and an approximate solutions to a discrete problem. 
The algebraic errors E closely approximate the algebraic errors of the approximate nonlinear 
solutioii q + Kq, within the accuracy of Newton linearizations approximating the nonlinear 
equations (9). 

At some stages of relaxation, the residuals of particular linearized discrete equations 
may become zero, imposing some conditions on the transient algebraic errors. Relaxation 
of the linearized pressure equation performed at  step (1) of the interior relaxation scheme 
(see Section 4.1), updates the algebraic error in pressure, E P :  the velocity errors, E" and 
E", remain unchanged. If the Laplace operator, Ah, were to  be "solved" to  zero residuals, 
rather than relaxed, the obtained algebraic errors would satisfy 

2((8iU)a: f 2(8:?J)8;)(€:1d) + 2((8;?')8; + 2(aGu)8:)(6:Id) + Ah(EEew) = 0, (36) 

where discrete operators Ah,  a:, and 8; are defined in Section 3.1. The equation (36) im- 
plies that the algebraic errors in the pressure of the transient solution, gqnew7 would not 
depend on the initial ( '*old7*) pressure errors: they would be completely defined by the initial 
distribution of the velocity algebraic errors. Significant error amplification can. thus, occur 
depending on the relative size of the initial errors in the pressure and velocities. This ampli- 
fication, if i t  occurs, is a one-time event. i.e., successive "solutions" of the Laplacian would 
not update the algebraic error distribution until the velocity errors are changed. Usually the 
Laplace operator of the pressure equation is not "solved" but relaxed with typically point 
or line relaxation methods. These relaxations mostly affect the high-frequency part of the 
pressure error: the smooth error components are hardly changed. 

The downstream marching of the momentum equations updates all (high-frequency and 
smooth) velocity components; it does not affect the errors in the pressure. If the marching 
has been performed with the S-driver. the algebraic errors of the updated solution satisfy 

where discretized derivatives are defined in Section 3.1 and Q" is the linear convection 
operator defined in Section 4. The "new" algebraic errors in the velocities are determined 
by the "old" algebraic errors in the pressure and are independent of the initial velocity 
errors. 

The convection operator linearized around a plane-stagnation solution has an unbounded 
fundamental solution. The velocity updates computed from the S-driver marching of the 
momentum equations toward stagnation are, thus, very sensitive to the errors in the pressure 
and prone to  error amplification. To demonstrate this sensitivity, we consider a differen- 
tial approximation to  the u-momentum equation linearized around the plane-stagnation 
solution (3) with a = 1 and the inflow boundary defined at  z = -L. For this example, 
6q  = (iu, &, 6p)  represents an approximate continuous solution with errors i = ( P ,  i", P )  
representing its deviation from the exact solution. At the symmetry line (y = 0), the 
pre-marching residuals of the linearized u-momentum equation are defined as 

where fu is a continuous approximation to the right-hand side of the relaxation u-momentum 
equation (the first equation of (13)). The update, S(&), obtained in the downstream march- 
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ing with the S-driver is computed as 

-.a,a(s;l) - 6(&) = T".  

gunew = + a(&). 
The errors of the updated solution satisfy the equation 

-xaZ ( c e w )  - c&w + a, (gzld) = 0. (40) 

For illustration purposes, let US consider an initial approximation with a linearly changing 
algebraic error in the pressure, 

aZ(cEld) = D. (41) 
The error: Cew: of the updated solution is: then, given as 

iLW = D (1 + 5) ; 
it is independent of i$d and unbounded as x tends to zero. 

One possible approach to  control this velocity-error amplification in the deepstagnation 
zone is to replace downstream marching with a more local relaxation scheme (e.g.. red- 
black) that would efficiently reduce high-frequency error components. but would not affect 
the smooth errors. Derivation of good local relaxation smoothers for convection-type o p  
erators is possible [14,18,19], but may be cumbersome. Moreover, rejecting downstream 
marching might require changes in the coarse-grid discrete formulation to better approxi- 
mate characteristic error components. 

On the other hand. the interior relaxation scheme that includes relaxation of the Laplace 
operator of the pressure equation followed by downstream marching of the convection opera- 
tors of the momentum equations proved to  be very efficient away from stagnation [20-231. It 
would be preferable to develop techniques allowing the downstream marching in stagnation 
proximity. but containing the error amplification. 

A possible technique is to change the driver operator used in the downstream marching. 
lye propose the D-driver operator (20). Away from stagnation. the D-driver has the same 
principal linearization (17) as the S-driver operator (19); at stagnation. the D-driver does 
not possess an unbounded fundamental solution. Marching with the D-driver can be very 
beneficial, but cannot assuredly prevent error amplification. In particular, the D-driver 
counterpart of (39), 

results in the approximate solution with iEew determined by a certain combination of initial 
pressure and velocity errors. After the downstream marching with the D-driver, the errors 
satisfy the equation 

-x8z(cew) + cew - 2Cld $- 8Z(iEld) = 0. (44) 
If the initial errors satisfy 

where D is constant, the Exew is given as 

-2e:Id & ( Z P )  = D,  

ZXew = -D (1 + z )  . 
(45) 

(46) 

The error ;Eew is bounded, but still may be larger than cEId. 

Figure 11 illustrates the amplification of algebraic errors in relaxation for the u-component 
of velocity along the symmetry line of a deepstagnation cylinder flow spanning two degrees 
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Figure 11. The algebraic error in u along the symmetry line for the deep-stagnation cylinder 
flow. Stagnation point is located at  5 = -1. 

of arc sector. The uniform body-fitted 33 x 33 grid is applied. The initial approximation is 
the exact continuous solution (6). On Figure 11, the initial u-velocity algebraic error is com- 
pared with algebraic errors obtained after the downstream marching of the u-momentum 
equation with the S-driver and with the D-driver. Marching with the S-driver leads to  very 
significant error amplification; marching with the D-driver results in significant reduction of 
the algebraic errors. For specific initial approximations obtained by solution interpolation 
from a coarser grid within an FhIG algorithm, the D-driver relaxation proved to  be very 
efficient, always leading to  textbook efficient FMG-1 solutions. 

6.3 Multigrid Description 

FV(v,,v,) Cycle 

4-levels 

Figure 12. Schematic of the FV-cycle for 4-level multigrid where YO denotes the number of 
relaxations on the coarsest mesh ( s28h) .  

The basic cycle employed in the multigrid algorithms reported in this section is an 
F V ( y ,  v2) cycle sketched in Figure 12. Unless otherwise specified, the multigrid solutions 
have been obtained as follows: At each grid, an FAS-FV(2.1) multigrid cycle has been used. 
The nonlinear equations at  the fixed coarsest grid have been solved exactly; thus finer grids 
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used progressively more levels of multigrid. iyithin the FAS cycle, a D-driver relaxation 
scheme. full-weighting restriction of residuals. and bilinear prolongation of corrections have 
been used with direct injection of the nonlinear solution to the coarser level. The FMG-k 
algorithm has started from an exact solution on the coarsest grid: cubic interpolation from 
coarser grid solutions has been used to form initial approximations on finer grids. 

Compact formulations for discrete boundary conditions at the inflow and tangency 
boundaries have been implemented (see Section 3.3). The D-driver relaxation scheme on 
isotropic grids has included three steps: (1) point Gauss-Seidel relaxation of the pressure 
equation performed in a downstream order, (2) 2 x 2-block line-implicit downstream relax- 
ation of momentum equations, (3) boundary relaxation BR3 at the inflow and tangency 
boundaries. 

For anisotropic grids with stretching. the relaxation of the pressure equation at step (1) 
has been replaced with lime-implicit alternate direction relaxation. In general situations, 
it is necessary to account explicitly for boundary coupling effects in these line relaxations. 
For example, the equations governing line relaxation for the pressure can be augmented 
with other equations to solve for other variables in some block near the boundary. This 
was not necessary for the test cases considered in this paper. Yote, solving the momentum 
equations coupled at the boundary is a simple illustration of this general consideration since 
the boundary conditions pertain to the normal and tangential velocities, which differ from 
the Cartesian velocities near a curved body. 

6.4 Isotropic Grids 

loor 

cra 

loor 

lo-"O 5 10 15 20 25 cra 
4 

30 

Figure 13. Residual convergence history. Plane stagnation flow with offset 0 (left plot) and 
offset 10 (right plot). 

6.4.1 Convergence Rates 

The convergence of the multigrid scheme is shown in Figures 13-15 for plane. cylindrical. 
and parabolic stagnation. The body-fitted grids are orthogonal and isotropic. Tests are 
performed for deep and regular stagnation flows. The Lz norms of residuals are shown. 
Circles correspond to the residuals of the pressure equation: squares and diamonds denote 
residuals of the u- and v-momentum equations, respectively. The largest residuals at each 
cycle are those of the pressure equation with the momentum residuals generally 1-2 orders 
of magnitude smaller. 
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cyck 

Figure 14. Residual convergence history. Cylindrical stagnation flow. Left plot - deep 
within stagnation (e,,, = -emin = So). Right plot - regular stagnation (e,,,, = -Omin = 
450). 

The plane stagnation results (Figure 13) were obtained on the 2 x 1 domain shown 
in Figure 1. The computational domain is either adjacent to the plane with the tangency 
conditions defined at the right vertical boundary or shifted upstream with outflow conditions 
given at the right vertical boundary with offset z = -10. The finest isotropic grid was 
129 x 65 and the coarsest grid level was 17 x 9. Since there is no discretization error 
for the plane-flow equations, the initial approximations on all grids were taken as random 
perturbations of the exact solutions for all variables. The results with the computational 
domain shifted away from the origin show the expected behavior - fast convergence rates 
of more than an order of magnitude per cycle. The asymptotic convergence rate of 0.09 
per cycle is identical to the rate of a similar multigrid applied to  the scalar five-point 
Laplacian operator. When the stagnation point is a part of the computational boundary, 
the convergence rates are grid-independent but show less regularity. Depending on initial 
approximations, the observed convergence rates may be different, but are always between 
0.13 and 0.2. Note also, that for computational doniairis including stagnation, the results 
were somewhat sensitive to  the length-to-width ratio of the computational domain: the 2 x 1 
domain chosen is the worst of the ranges investigated. 

The cylinder results (Figure 14) were obtained for a grid spanning 90 degrees of arc 
sector (regular stagnation) and for one spanning 10 degrees of arc sector (deep stagnation). 
The finest isotropic grid was 65 x 65, and the coarsest grid level was 9 x 9. The initial 
approximations on each grid, except for the coarsest one. were obtained using cubic solution 
prolongation from the coarser grid. The regular-stagnation tests show grid-independent 
convergence rates (better than 0.1 per cycle) comparable to the rates for the scalar five- 
point Laplacian operator. The convergence for deep-stagnation flows is grid-independent, 
but slightly slower: asymptotic convergence rates are about 0.17 per cycle. 

The parabola results (Figure 15) were obtained with qm,,/qmin values of 8 and 1.25, 
corresponding to regular and deep stagnation flows, respectively. The finest isotropic grid 
was 129 x 129, and the coarsest grid level was 9 x 9. The initial approximations on fine grids 
were obtained by cubic interpolations of coarser-grid solutions. The results are quite similar 
to those for the previous case - grid-independent asymptotic convergence rates better than 
0.1 per cycle for regular stagnation and about 0.17 per cycle for deep-stagnation flows. 

Although not shown, the asymptotic rates for deep-stagnation flows were better for 2- 
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Figure 15. Residual convergence history. Parabolic stagnation flow. Left plot - deep within 
stagnation (7lmax/vmin = 1.25). Right plot - regular stagnation ( Q ~ ~ ~ / Q ~ ~ ~  = 8) 

Simulation Grid Discr. Err. FhlG-1 Err. AE/DE 

Cylinder flow 65 x 65 0.1907~10-~ 0.2058~10-~ 0.08 ’ 

Deep stagnation, 33 x 33 0.7303~10-” 0.8107~10-~ 0.11 

Regular stagnation, 33 x 33 0.1681~10-~ 0.1660~10-~ 0.01 
Cylinder flow 65 x 65 0.4274~10-’ 0.4302~10-’ 0.01 

D ~ D  Stagnation. 65 x 65 0.9699~10-~ 0.1043~10-~ 0.07 

level cycles but did not recover the convergence rates found for regular stagnation. Also, 
bllc L u ~ ~ v ~ ~ ~ ~ ~ ~ ~ ~  1 Q L C ~  LQII ~e sigiiificaliiiy irriproveci wish other, more eficient, reiaxation 
schemes for the pressure equation, e.g., line-implicit or red-black relaxation schemes: the 
improved convergence rates are still somewhat slower than the (also improved) convergence 
rates of the corresponding multigrid cycle for the five-point Laplace operator. In the extreme 
case of solution (with a separate multigrid cycle) of the pressure equation for a fixed velocity 
field, convergence rates of 0.3 per relaxation (0.027 per cycle) were observed. 

CL.. __-_ ~ ^__^_^^ --A^.. - - - -  L -  - 

1 -  

Parabola flow 

Parabola flow 
Regular stagnation, 

6.4.2 FMG Performance 

I 

129 x 129 0.2488~10-~ 0.2627~10-~ 0.06 

129 x 129 0.8978~10-’ 0.9305~10-’ 0.04 
65 x 65 0.3739~10-~ 0 .3739~10-~  0.02 

Table 2. L,  norm of the discretization error in p and FMG-1 convergence for stagnation 
flows (isotropic grids). 

The convergence of FMG-1 algorithm (one FV(2,l) cycle per grid level) for the cylinder 
and parabola, are shown in Table 2. The L,  norms of discretization errors are compared 
with the norms of the errors after FMG-1 algorithm for four different simulations and two 
different grids: the ratios of the norms of algebraic errors to the norms of discretizations 
errors are exhibited in the last column. On all grid levels, the algebraic errors after the 
FMG-1 algorithm are at least an order of magnitude smaller than the discretization errors. 
The total computational work of the algorithm is less than 8 minimal work units. For all 
computations, every variable shows second order convergence of discretization error in all 
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norms. The residuals of the discretized continuity equation evaluated from the discrete 
solution exhibit second-order convergence in the &?-norm and first-order convergence in 
the &-norm. Only the maximum discretization error in pressure is tabulated in Table 2, 
showing a factor of 4 reduction between the coarser and finer grid levels. 

6.5 Stretched Grids 

30 r 

Figure 16. Computational domain for parabolic stagnation flow: stretched 65 x 65 grid 

cycle 

Figure 17. Convergence history on stretched grids 

Grid stretching is often used in applications to cluster grid points in certain regions. such 
as the leading or trailing edges of an airfoil or in viscous boundary layers. Stretching may 
cause unintended anisotropies in the discrete equations: line-implicit relaxation can be used 
in combination with full-coarsening multigrid to account for this grid-induced anisotropy in 
two dimensions. A stretched grid for the parabola is shown in Figure 16, where grid-induced 

34 



anisotropies are evident far upstream of the leading edge and also dowiistreani along the 
body surface. The stretching ratio on the parabolic grid relates to the stretching factor 
3 = 1.0125 in the transformed plane on the 6.5 x 6.5 grid. resulting in a cell aspect ratio of 
approximately 4. This anisotropy is significant enough to cause a deterioration in smoothing 
properties of point Gauss-Seidel relaxation: asymptotic convergence rates around 0.73 per 
relaxation were observed in FV(2, 1) cycles solving the Laplace equation with the Dirichlet 
boundary conditions on the 129 x 129 grid with stretching factor /3 = d m .  

The multigrid convergence on the stretched parabolic grids is shown in Figure 17. The 
finest grid is 129 x 129 with the stretching ratio D = 1.00625, and the coarsest grid level 
is 9 x 9. Relaxation for the pressure equation includes three line-implicit sweeps: first, 
lines parallel to the body surface are solved in downstream order, then, lines normal to the 
body surface are marched in alternating directions. The multigrid FV(2. 1) cycle exhibits 
grid-independent convergence rates of about 0.064 per cycle on the three finest grids and 
somewhat slower convergence on the coarsest grid (17 x 17). The convergence rates for 
the Laplace equation alone with multigrid cycle employing the triple-sweep line-implicit 
relaxation scheme described above are about 0.008 per cycle. somewhat faster than for the 
full system. The slower convergence rate on the coarsest grid in Figure 17 is symptomatic 
of a lack of leading edge resolution that was also observed with larger grid stretching rates 
for the same numbers of grid points. This deterioration is attributed to the ensuing lack 
of discretization accuracy on coarse grids with high stretching rates. The adverse effect 
of pnnr arruracy r r ~  crr~vergecce ef Se~.%c:: iterztioiis h a  “vn  discussed iii Seciion 6.i .  
In particular, with a stretching ratio /3 = 1.018 on the 129 x 129 grid, the FMG solution 
becomes inaccurate. The convergence of Xewton’s method on the corresponding 33 x 33 
grid (9 =z 1.08) is quite erratic even with the initial approximation obtained from the exact 
differential solution. 

P 
U 

Grid I Variable I Discr. Err. I FMG Err. I AE/DE 
U I 0.1096~10-~ I 0.1044~10-~ I 0.047 

I 

0.5279~10-’ I 0.4987~10-~ 0.055 
0 . 2 8 9 3 ~ 1 0 ~ ~  I 0.2730~10-~ 0.056 

I I 65 x 65 I V I 0.1026x10-’ I 0 .9824~10-~ I 0.043 1 

21 I 0.2851~10-’ I 0.2665~10-’ I 0.065 
D I 0.1344~10-‘ I 0.1268x10-’ I 0.057 

I 129 129 I 
Table 3. 
stagnation flows (stretched grids). 

L2 norm of the discretization errors and FMG-1 convergence for parabola- 

The L2-norm of the discretization errors in each of u, v, and p and the total (discretization 
plus algebraic) errors of the FMG-1 algorithm are shown in Tables 3 for the two finest grids. 
Second-order convergence of the discretization errors is obtained and the algebraic errors 
of the FMG-1 solutions are far less than the discretization errors. The total computational 
cost of this FMG-1 algorithm is about 12 minimal work units. 

7 Conclusions 
Text book multigrid efficient solvers have been developed for a pressure-equation formula- 
tion of the incompressible inviscid equations, although the conclusions are expected to apply 
to more general situation involving viscosity and compressibility. The relaxation strategy, 
based largely on analysis and computation for plane stagnation, enables convergence of al- 
gebraic errors below discretization errors in one multigrid cycle and asymptotic convergence 
rates approaching those for the scalar elliptic factor. 
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During the course of this work the following four principal difficulties associated with 
achieving ThlE for stagnation-flow problems have been identified and overcome: 

1. The accuracy of the discrete solution is very sensitive to boundary condition formu- 
lations in the vicinity of stagnation point. Compact numerical closure conditions leading to  
sufficient solution accuracy on all uniform, including anisotropic, grids have been found and 
applied. 

2. Strong coupling between the equations near the boundaries and associated difficulties 
with restricting fine-grid residuals to  coarser grids led to a significant slowdown of multigrid 
convergence rates. This difficulty has been solved by implementing the concept of boundary 
relaxation. 

3. Initial amplification of the algebraic errors in relaxation was an obstacle to achieving 
the TRlE goal. A special relaxation scheme has been developed to avoid amplification of 
the specific errors arising in the FMG solver. 

4. Lack of reliable quantitative analytical tools hampered our abilities to optimize niulti- 
grid solvers. New, very general, analysis methods for multigrid solutions of stagnation flows 
have been developed. 
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Appendix A 

One-dimensional analysis 

1 

In this appendix, we apply a simplified one-dimensional analysis to nonlinear problems 
associated with stagnation flows. First, we consider a one-dimensional nonlinear convection 
equation 

uu,= f, u 2 0 ,  (AI) 

defined on the interval x E [-a, -b ] ,  a > b 2 0. where stagnation can be enforced through the 
force term. The solution u of ( A l )  is assumed nonnegative. therefore, the standard boundary 
condition for this equation is defined at the left (inflow) end of the interval [-a, 4 1 .  

.(-a) = u,. (A2) 

Upstream boundary conditions for convection equations are usually justified by considering 
a constant-coefficient problem corresponding to the free-stream linearization of convection- 
diffusion equations. in the limit of vanishing diffusion. Yonlinear stagnation flow problems 
usually have highly variable. (at least in the vicinity of stagnation) solutions that are very 
different from the the   near!^ c o c s t ~ ~ t )  f r s  st:~arn sab~tions. The cor~ec t i~ i i  eqii.at.iioii 
linearized around a spatially varying solution may favor another (more stable) boundary 
condition. Such a situation occurs when the velocity and the velocity derivative along the 
characteristic direction have the opposite signs (decelerating flow). Choosing the standard, 
but less stable, upstream boundary condition for a deceleration flow regime may lead to a 
reduced convergence basin (or even unconditional divergence) for the Newton iterations. 

The boundary condition (A2) is in agreement with the linearization (G&(bu)) around a 
constant (free-stream) solution (u = ti, f = 0). The fundamental solution of the homoge- 
neous equation 

tI&(6u) = 0 (-43) 

is 6u 1: therefore. a stable formulation can be obtained with boundary condition assigned 
at either side of the interval z E [-a, 4 1 .  The situation is very different if the linearization 
is performed around a stagnation-like decelerating solution u = -IC, f = z. The linearized 
operator is defined now as 

-d , (du)  - d^u, (-44) 

and the fundamental homogeneous solution, bu = i, grows to infinity as x tcnds to zero. For 
equation (AI), with a decelerating flow solution, a more stable boundary condition would 
be defined downstream, at the right (outflow) end of the interval, 

'L1(-b) = ub. (A5) 

FVith the boundary condition (A5), the nonlinear convection problem (Al )  is well posed, 
and the Kewton iterations are converged unconditionally. With the boundary condition 
(A2), the problem (Al )  is also well posed as long as b > 0. Convergence rate of the quasi- 
Sewton iterations with operator (A4) as a driver is p = $$. where E is a measure of the 
difference between the initial approximation and the exact solution. Obviously, if b = 0, the 
quasi-Newton iterations always diverge. 

For one-dimensional system of equations 
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with solution 
. s2 u = - x ,  p = - -  2 ’  

the linearization is given by the matrix 

> -  ( -38, ax, 

-sa, - 1 a, 

and the fundamental homogeneous solutions, q = 

The quasi-Newton iterations with driver (A8) unconditionally converge quadratically for the 
standard set of boundary conditions: 

b2 
2 u(-u) = U ,  p X ( - u )  = U ,  p(-b)  = --I 

Mlth the S-driver defined as 

the fundamental homogeneous solutions are 

The S-driver iterations are only conditionally stable for b > 0 and diverge for b = 0. For 
two dimensional stagnation flows, no asymptotic divergence has been found in numerical 
iterations with the S-driver: however, an initial amplification of algebraic errors has been 
observed. This discrepancy between the analysis and the practical experience suggests that 
one-dimensional analysis is not capable to accurate predicting the two-dimensional behavior. 

With the D-driver defined as 

the fundamental homogeneous solutions are 

The iterations with the D-driver are stable for (A9). This observation was the first motiva- 
tion for considering D-driver schemes versus S-driver schemes. 
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Appendix B 

Constant-Coefficient Analysis 

As we have already mentioned in Section 5.1, the constant-coefficient approximations 
to the stagnation flow equations are valid only in restricted regions that do not include 
the major flow features such as the characteristic curve going into the stagnation point. 
Kevertheless, for completeness, we present here a stability analysis of the differential for- 
mulation for the constant-coefficient approximation to the plane-stagnation flow equations. 
This analysis does not take into account the compatible-coefficient restrictions (32). 

The constant-coefficient differential equations are defined as 

L ( q ) -  0 Q + l  a, q = o ,  ( :;a: *:y : ) 
where q = (u, v,p)', Q = iia, + Uav, and fi and 2, are positive constants: A is the Laplace 
operator. The computational domain is a strip (z, y), xo 5 x I 2 1 .  The boundary z = z o  
is called the inflow boundary. and x = 2 1  is the outflow boundary. 

The fundamental solutions to the hornngensw e q u a t i c ~ ~  (R1) 're scught in the fer= 

where 'uk, vk,pk, X I ,  are constants possibly dependent on the parameter w. The coefficients 
X k  are found as roots of the characteristic polynomial 

((GX + itjw)2 + 1 ) ( P  - w2) + 2(iiix + i V W ) ( P  + w2) = 0. 033) 

obtained after substituting eAkx+tY.Y into the equation 

det L(q)  = 0. (B4) 

For any *J, for which Re(&) # 0, a formal necessary condition for stability of boundary 
conditions is that the number of roots Xk(Re(Xk) < 0) should be equal t o  the number of the 
boundary conditions defined at the inflow boundary; the number of roots &(Re(&) > 0) 
should be equal to the number of the boundary conditions defined at the outflow boundary. 
Unfortunately, the number of roots with a given sign of the real parts depends on w. For 
G = 6 = 1, there exist an w*,: < w* < 4, such that, for 0 < w < w*, there are three 
negative real parts and one positive real part: for w > w*, there are one negative real part 
and three positive real parts. Thus, with standard set of boundary conditions defined as 
u, v, and &p given at the inflow and p given at the outflow, the modes w > W* are unstable. 
Instability means that there are homogeneous solutions that grow exponentially from the 
boundary toward the interior; thus, small changes in boundary data may cause large changes 
in the solution. 
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Appendix C 

Scheme S-driver 
Point Lexicographic 0.514 

Point Anti-lexicographic 0.514 
y-Line Lexicographic 0.547 

y-Line Anti-lexicographic 0.444 
Solve 0.117 

Local Mode Analysis: Details 

D-driver h - 0 
0.512 0.500 
0.513 0.500 
0.519 0.444 
0.444 0.444 
0.222 0.0 

In this appendix, we present details pertaining to the LMF analyses of the relaxation 
scheme and two-level cycle for the formulation introduced in Section 5.3.3. The system of 
equations is defined in (31). The results were determined from parametric investigations 
using various mesh intervals and values of v / u  = tan a;  in each case, an +neighborhood was 
considered with E = 0.5. Uniform isotropic grids were used, so in general the considered 
domains were rectangular with different numbers of mesh intervals, N ,  and N,.  in the 5- and 
y-directions, respectively. The normalized Fourier frequencies, 0, and 0, , span the interval 
[-T. 7r] with the increments 66, = 27r/N, and SO, = 27r/NY, respectively. 

The symbol of the S-driver relaxation is defined in (33). For lexicographic pointwise 
Gauss-Seidel relaxation of the Laplace operator in the pressure equation, the symbol, GSh,  
is replaced as 

(C1) 
1 

h2 
GSh = - (e-", + ,-"e, - 4) ; 

several other relaxation schemes of the Laplace operator have also been considered, including 
anti-lexicographic pointwise Gauss-Seidel relaxation, y-line-implicit Gauss-Seidel relaxation 
(both lexicographic and anti-lexicographic order) and a direct solve. All other symbols 
are defined in (34). The symbol of the D-driver relaxation is very similar to the S-driver 
relaxation symbol: &=io 1 0 0  1 o ) - (  

0 0 1  0 0 GSh -23; 23; A h  

Table C1. Smoothing factors for various relaxations of the pressure equation 

Table C1 summarizes the worst smoothing factors for the S-driver and D-driver from a 
set of parametric LMF analyses; the minimum number of mesh intervals was 4 and increased 
as powers of 2 and the values of t a n a  were 0.5, 1, and 2. The additional entries (labeled 
h -+ 0) correspond to the limiting case of very fine grids for either driver. The worst 
smoothing factors are somewhat higher than those on the very fine grids and depend on 
the order of relaxation because of the coupling between the equations that is much stronger 
on coarser grids. This latter dependence is most noticeable for y-line relaxation, which has 
better smoothing when the pressure is relaxed in the upstream order. However, all the 
smoothing factors are well bounded from unity. 

The relaxation amplification factors from the parametric analyses are bounded by 1 
everywhere except for the characteristic errors. As an example, the Table C 2  collects the 
amplification and smoothing factors for the S- and D-drivers for the flow at  45 degrees with 
lexicographic pointwise Gauss-Seidel relaxation. As noted previously, the smoothing factors 
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S-Driver: N = 128, Maximal Amplification = 1.8030 D-Driver: N = 128, Maximal Amplification = 2.0000 

Figure C1. Relaxation amplification factors 

16 0.51 1.14 0.51 2.00 
32 0.50 1.17 0.50 2.00 
58 0.50 18.66 0.50 2.00 
64 1.46 0.50 2.00 
128 1 ::E: 1 1.80 1 0.50 I 2.00 1 

Table C2. Smoothing and amplification factors for the E- neighborhood corresponding to 
fi = V = 1 , ~  = 0.5. 

are good. The amplification factor for the S-driver is erratic on the grids with a relatively 
big mesh size. On finer grids, the amplification factor tends to infinity for certain smooth 
(but not the smoothest) characteristic frequencies of the convection operator (8, = --eg), 
for which the symbol Q approaches 1. On the coarse grids, the smallest possible value 
of Q - 1 is determined by the meshsize h and the frequency increment 68: that explains 
the irregular behavior of the amplification factor. For illustration purposes, the results 
for a non-standard 59 x 59 grid are added to the table. At this grid, h = 1/58. and, for 

= -8, = $x,Q = 0.9909. The amplification factor of the D-driver is 2 on all the grids. 
Figure C1 illustrate the amplification factor over a part of the frequency domain. Note 
that the large amplification factor for the S-driver occurs for very specific isolated smooth 
characteristic components of the convection operator. The amplification of the D-driver 
is also much larger for the smooth characteristic components than for other components, 
reaching its maximum at the smoothest component. 

Table C3 compares the amplification factors of the two-grid (1,2) cycle with either S- 
driver or D-driver. The factors for the grid 65 x 65 are illustrated in Figure C2. Again, 
huge amplification factors are observed for isolated characteristic frequencies in the cycle 
with the S-driver. Uore regular but still diverging amplification factors are predicted for 
the cycle with the D-driver. The predicted instabilities of the two-grid cycle correspond 
to characteristic errors with moderate oscillations in the cross-characteristic direction. The 
characteristic errors with smoothest cross-characteristic oscillations are well reduced by the 
coarse grid correction but the correction for the moderate oscillations can be shown to be 
0.75 and is not enough to suppress the instability in relaxation. In multigrid solvers for 
hyperbolic problems, the effects of boundary conditions on characteristic errors would be 
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31 703.52 
8.15 

1.46 
1.22 
1.31 
1,42 
1.43 

Table C3. Amplification factors for 2-level (1,2) cycle with different relaxation schemes 

2-level ( 1, 2) cycle 
S-Driver: N = 64, Maximal Amplification = 8.1487 

2-level ( 1, 2) cycle 
D-Driver: N = 64, Maximal Amplification = 1.4227 

Figure C2. Amplification factors of a two-grid cycle 

quite pronounced and, thus, violate the locality conditions discussed in Section 5.1. In 
this appendix, u7e do not rigorously enforce the locality conditions nor do we account for 
boundary conditions, that would be possible with a half-space analysis. Rather, we regard 
the results of the LMF analyses only as a indicator of possible amplifications and rely 
on other analyses (ICG and IR) with fewer restrictions developed herein for quantitative 
predictions. 
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